1 |
Frontini, M. & Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations, Appl. Math. Comput. 149 (2004), 771-782.
DOI
ScienceOn
|
2 |
Hernandez, M.A.: A modification of the classical Kantorovich conditions for Newton's method. J. Comput. Appl. Math. 137 (2001), 201-205.
DOI
ScienceOn
|
3 |
Argyros, I.K. & Chen, D.: Results on the Chebyshev method in Banach spaces. Proyecciones 12 (1993), 119-128.
|
4 |
Argyros, I.K. & Chen, D.: The midpoint method in Banach spaces and the Ptak error estimates. Appl. Math. Comput. 62 (1994), 1-15.
DOI
ScienceOn
|
5 |
Gutierrez, J.M. & Hernandez, M.A.: An acceleration of Newton's method: super-Halley method. Appl. Math. Comput. 117 (2001), 223-239.
DOI
|
6 |
Argyros, I.K. & Chen, D.: On the midpoint iterative method for solving nonlinear operator equations in Banach space and its applications in integral equations. Rev. Anal. Numer. Theor. Approx. 23 (1994), 139-152.
|
7 |
Argyros, I.K.: On the comparison of a weak variant of the Newton-Kantorovich and Miranda theorems. J. Comput. Appl. Math. 166 (2004), 585-589.
DOI
ScienceOn
|
8 |
Argyros, I.K.: Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, USA, 2007.
|
9 |
Weerakoon, S. & Fernando, T.G.I.: A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), 87-93.
|
10 |
Wu, Q. & Zhao, Y.: Third-order convergence theorem by using majorizing function for a modified Newton method in Banach space. Appl. Math. Comput. 175 (2006), 1515-1524.
DOI
ScienceOn
|
11 |
Frontini, M. & Sormani, E.: Some variant of Newton's method with third-order convergence. Appl. Math. Comput. 140 (2003), 419-426.
DOI
ScienceOn
|
12 |
Argyros, I.K. & Chen, D.: The midpoint method for solving nonlinear operator equations in Banach space. Appl. Math. Lett. 5 (1992), 7-9.
|
13 |
Hernandez, M.A. & Salanova, M.A.: Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method. J. Comput. Appl. Math. 126 (2000), 131-143.
DOI
|
14 |
Kantorovich, L.V. & Akilov, G.P.: Functional analysis in normed spaces. Pergamon Press, Oxford, 1982.
|
15 |
Frontini, M. & Sormani, E.: Modified Newton's method with third-order convergence and multiple roots. J. Comput. Appl. Math. 156 (2003), 345-354.
DOI
ScienceOn
|
16 |
Argyros, I.K.: An improved error analysis for Newton-like methods under generalized conditions. J. Comput. Appl. Math. 157 (2003), 169-185.
DOI
ScienceOn
|
17 |
Deuflahard, P. & Heindl, G.: Affine invariant convergence theorems for Newton's method and extensions to related methods. SIAM J. Numer. Anal. 16 (1979), 1-10.
DOI
ScienceOn
|