• Title/Summary/Keyword: New Boundary Nodes

Search Result 51, Processing Time 0.022 seconds

A Geographic Distributed Hash Table for Virtual Geographic Routing in MANET (MANET에서 가상 위치 기반 라우팅을 위한 지역 분산 해쉬 테이블 적용 방법)

  • Ko, Seok-Kap;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.58-65
    • /
    • 2008
  • This paper presents a new geographic distributed hash table (GDHT) for MANETs or Mesh networks, where virtual geographic protocol is used. In previous wort GDHT is applied to a network scenario based on two dimensional Cartesian coordinate system. Further, logical data space is supposed to be uniformly distributed. However, mobile node distribution in a network using virtual geographic routing is not matched to data distribution in GDHT. Therefore, if we apply previous GDHT to a virtual geographic routing network, lots of DHT data are probably located at boundary nodes of the network or specific nodes, resulting in long average-delay to discover resource (or service). Additionally, in BVR(Beacon Vector Routing) or LCR(Logical Coordinate Routing), because there is correlation between coordinate elements, we cannot use normal hash function. For this reason, we propose to use "geographic hash function" for GDHT that matches data distribution to node distribution and considers correlation between coordinate elements. We also show that the proposed scheme improves resource discovery efficiently.

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K.;Raj, Shubham;Tiwari, Pratik;Kumar, Ajay;Chakrabarti, Anupam;Pathak, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.227-241
    • /
    • 2020
  • The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

The heterotopia in Caryl Churchill's Cloud Nine (캐럴 처칠의 "클라우드 나인" 에서의 혼재향)

  • Jeong, Kwi-Hoon
    • English Language & Literature Teaching
    • /
    • v.13 no.1
    • /
    • pp.211-233
    • /
    • 2007
  • Caryl Churchill achieved spacial politics to resist dominant ideology in Cloud Nine. It is suggested that heterotopia is a counter-site to the places which are controlled by colonialism and sexuality. Churchill juxtaposes African colony of Victorian period in the first act and modern London in the second act. It implies that individuals are similarly oppressed by dominant ideology until now though several conditions for individuals are drastically improved. White heterosexual men in the play try to build their utopia to keep their privileges. If they find anything abnormal to their standard, they systematically classify people and organize them into the different ranks and levels to seclude them from their utopia. Actually, the ideal people in the ideal place are oppressed by patriarchal ideology, compulsory heterosexuality, and colonialism which are covertly associated with gender. Therefore, Churchill uses the cross-casting to challenge the artificiality of gender, sexuality, generation and race in the play. People realize that they need to find their own desires free from gender, compulsory heterosexuality, ethnic, and race and their subjectivity flowing in and out of space. It is the site that all the binary oppositions are deconstructed and creates new multiple nodes to expand the boundary of their communities to heterotopia in real places.

  • PDF

A Study on the Location Awareness System Using TOA(Time of Arrival) of CSS(Chirp Spread Spectrum) Algorithm (CSS 기반의 TOA 알고리즘을 이용한 위치인식 시스템 구현에 관한 연구)

  • Kim, Jung-Soo;Yang, Jin-Uk;Yang, Sung-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.13-25
    • /
    • 2008
  • In this paper, we propose the Location Awareness System adjusting Ranging Technology for CSS(Chirp Spread Spectrum) which is adopted on 2.45GHz standard in IEEE 802.15.4a and TOA(Time-of-Arrival) algorithm. The conventional methods have adopted RSSI, ultrasonic waves and infrared rays in Zigbee. RSSI measures strength indication of received signal and recognizes the position of nodes in RF boundary. However, this technology has the following problems; lots of error by the change of the channel environment and much power consumption. In this paper, adopting chirp pulse on 2.45GHz standard in IEEE 802.15.4a and SDS-TWR(Symmetrical Double Side-Two Way Ranging) method using the characteristic of Spread Spectrum, a new Location Awareness System is suggested. The distance and the coordinate are measured within ${\pm}\;5cm$ by TOA(Time of Arrival) algorithm and proposed algorithm and the data in error rate is decreased less than 1%. Through these results, the algorithm suggested in this paper is verified for its performance in a computer simulation.

  • PDF

Analysis of finite element stress on the articular disc of jaw during function (기능중 두개골 내 관절원판의 유한요소 스트레스 분석)

  • Kang, Dong-Wan;Lim, Seung-Jin;Ahn, Kwang-Hyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.2
    • /
    • pp.75-84
    • /
    • 2001
  • The purpose of this study is to to analyze the mechanical stress on articular disk of the dentated skull with the condition of unilateral posterior molar missing. For this study, the three dimensional finite element model of human skull scanned by means of computed tomography. (G.E. 8800 Quick, USA) was constructed. The finite element model of jaws is composed of 98,394 elements and 38,321 nodes, and it consists of articular disc, maxilla, mandible, teeth, periodontal ligament and cranium. Boundary condition included rigid restraints at the first molar and endosteal cortical surfaces of the insertion points of temporal bone. The data derived from Nelson's study were used for the loading conditions of mandible during clenchings and for maxilla, new loading and constraint conditions were applied. A clenching task during intercuspal position was modeled to the three dimensional finite element model. The stress level and displacement of articualr disc on the model with unilateral posterior molar missing under bilateral clenching task can be analyzed. During bilateral clenchings, the compressive stress level and diplacement of the articular disk on the side of unilateral posterior molar missing is greater than that on the case with full dentition, whereas a higher stress was found on the disk on the balancing side of the full dentition. Although this kind of study is not enough to explain the role of occlusion as an etiologic factor of TMD, there may be a possibiliy that the condition of posterior molar missings may contribute in part to the TMJ biomechanics.

  • PDF

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

In-Plane Extensional Buckling Analysis of Curved Beams under Uniformly Distributed Radial Loads Using DQM (등분포하중 하에서 미분구적법(DQM)을 이용한 곡선 보의 내평면 신장 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.265-274
    • /
    • 2018
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has prompted studies directed toward the development of an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have been obtained traditionally using standard finite difference or finite element methods. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under the conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method (DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as the excessive use of storage due to the conditions of complex geometry and loading. The in-plane buckling of curved beams considering the extensibility of the arch axis was analyzed under uniformly distributed radial loads using the DQM. The critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with the precise results by other methods for cases, in which they were available. The DQM, using only a limited number of grid points, provided results that agreed very well (less than 0.3%) with the exact ones. New results according to diverse variations were obtained, showing the important roles in the buckling behavior of curved beams, and can be used in comparisons with other numerical solutions or with experimental test data.

Out-of-Plane Buckling Analysis of Curved Beams Considering Rotatory Inertia Using DQM (미분구적법(DQM)을 이용 회전관성을 고려한 곡선 보의 외평면 좌굴해석)

  • Kang, Ki-jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.300-309
    • /
    • 2016
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort towards developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of many investigations. Solutions to the relevant differential equations have traditionally been obtained by the standard finite difference or finite element methods. However, these techniques require a great deal of computer time for a large number of discrete nodes with conditions of complex geometry and loading. One efficient procedure for the solution of partial differential equations is the differential quadrature method (DQM). This method has been applied to many cases to overcome the difficulties of complex algorithms and high storage requirements for complex geometry and loading conditions. Out-of-plane buckling of curved beams with rotatory inertia were analyzed using DQM under uniformly distributed radial loads. Critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with exact results from other methods for available cases. The DQM used only a limited number of grid points and shows very good agreement with the exact results (less than 0.3% error). New results according to diverse variation are also suggested, which show important roles in the buckling behavior of curved beams and can be used for comparisons with other numerical solutions or experimental test data.

Finding Rectilinear(L1), Link Metric, and Combined Shortest Paths with an Intelligent Search Method (지능형 최단 경로, 최소 꺾임 경로 및 혼합형 최단 경로 찾기)

  • Im, Jun-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.43-54
    • /
    • 1996
  • This paper presents new heuristic search algorithms for searching rectilinear r(L1), link metric, and combined shortest paths in the presence of orthogonal obstacles. The GMD(GuidedMinimum Detour) algorithm combines the best features of maze-running algorithms and line-search algorithms. The SGMD(Line-by-Line GuidedMinimum Detour)algorithm is a modiffication of the GMD algorithm that improves efficiency using line-by-line extensions. Our GMD and LGMD algorithms always find a rectilinear shortest path using the guided A search method without constructing a connection graph that contains a shortest path. The GMD and the LGMD algorithms can be implemented in O(m+eloge+NlogN) and O(eloge+NlogN) time, respectively, and O(e+N) space, where m is the total number of searched nodes, is the number of boundary sides of obstacles, and N is the total number of searched line segment. Based on the LGMD algorithm, we consider not only the problems of finding a link metric shortest path in terms of the number of bends, but also the combined L1 metric and Link Metric shortest path in terms of the length and the number of bands.

  • PDF

In-Plane Extensional Vibration Analysis of Asymmetric Curved Beams with Linearly Varying Cross-Section Using DQM (미분구적법(DQM)을 이용한 단면적이 선형적으로 변하는 비대칭 곡선보의 내평면 신장 진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2019
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has results in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have traditionally been obtained by the standard finite difference. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method(DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as excessive use of storage due to conditions of complex geometry and loading. In this study, the in-plane extensional vibration for asymmetric curved beams with linearly varying cross-section is analyzed using the DQM. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results are compared with the result by other methods for cases in which they are available. According to the analysis of the solutions, the DQM, used only a limited number of grid points, gives results which agree very well with the exact ones.