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등분포하중 하에서 미분구적법(DQM)을 이용한 

곡선 보의 내평면 신장 좌굴해석
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호서대학교 공과대학 기계공학부  

Abstract  The increasing use of curved beams in buildings, vehicles, ships, and aircraft has prompted studies directed 

toward the development of an accurate method for analyzing the dynamic behavior of such structures. The stability 

behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant 

differential equations have been obtained traditionally using standard finite difference or finite element methods. 

These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large 

under the conditions of complex geometry and loading. One of the efficient procedures for the solution of partial 

differential equations is the method of differential quadrature. The differential quadrature method (DQM) has been 

applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the 

computer, as well as the excessive use of storage due to the conditions of complex geometry and loading. The 

in-plane buckling of curved beams considering the extensibility of the arch axis was analyzed under uniformly 

distributed radial loads using the DQM. The critical loads were calculated for the member with various parameter 

ratios, boundary conditions, and opening angles. The results were compared with the precise results by other methods 

for cases, in which they were available. The DQM, using only a limited number of grid points, provided results that 

agreed very well (less than 0.3%) with the exact ones. New results according to diverse variations were obtained, 

showing the important roles in the buckling behavior of curved beams, and can be used in comparisons with other 

numerical solutions or with experimental test data.

요  약  빌딩, 자동차, 선박, 항공기 등에서의 곡선보 사용 증가가 이러한 구조물의 동적거동해석에 필요한 정확한 해법

발전에괄목할만한기여를해왔다. 탄성곡선보의안정성거동은많은연구자들의한과제분야였다. 전통적으로미분방정식

의 해법은 유한치분법이나 유한요소법으로 해결해왔다. 이러한 방법들은 복잡한 기하학적 구조 및 하중에 따른 격자점의

증가로많은컴퓨팅시간을요구한다. 편미분방정식의해를구하기위한효율적인방법중의하나는미분구적법이다. 복잡한

기하학적구조및하중은컴퓨터용량을과도하게사용할뿐만아니라, 복합알고리즘프로그램의어려움을극복하기위하여

미분구적법(DQM)이많은분야에적용되어왔다. DQM을이용하여곡선보의아크축신장을고려한내평면좌굴을등분포

하중하에서해석하였다. 다양한매개변수비, 경계조건, 그리고열림각에따른임계하중을계산하였다. DQM 결과는활용

가능한 다른 엄밀해와 비교하였다. DQM은 적은 격자점을 사용하고도 엄밀해 결과와 일치함을 보여주었다 (0.3% 미만). 

다양한 변경에 따른 새로운 결과가 또한 제시 되였고, 그 결과는 곡선 보의 좌굴거동에 중요한 역할을 보여주었고, 다른

수치해석결과 혹은 실험결과비교에 사용될 수 있다.

Keywords : Critical Load, DQM, Extensional Buckling, New Result, Radial Load   
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1. Introduction

Owing to their importance in many fields of 

technology and engineering, the stability behavior of 

elastic arches has been the subject of a large number 

of investigations. Solutions of the relevant differential 

equations have traditionally been obtained by the 

standard finite difference or finite element methods. 

These techniques require a great deal of computer time 

as the number of discrete nodes becomes relatively 

large under conditions of complex geometry and 

loading. In a large number of cases, the moderately 

accurate solution which can be calculated rapidly is 

desired at only a few points in the physical domain. 

However, in order to get results with even only limited 

accuracy at or near a point of interest for a reasonably 

complicated problem, solutions often have dependence 

of the accuracy and stability of the mentioned methods 

on the nature and refinement of the discretization of 

the domain.

The common engineering theory of flexure is based 

on the Bernoulli-Euler-Navier assumption that cross 

sections, which are perpendicular to the centroid before 

bending, remain plane and perpendicular to the 

deformed locus.

Ojalvo et al.[1] studied the elastic stability of ring 

segments with a thrust or a pull directed along the 

chord. Vlasov[2] derived closed-form solutions such as 

for an arch, in which cross-sections are allowed to 

warp non-uniformly along the beam axis, subject to 

in-plane bending and uniformly distributed radial loads. 

Timoshenko and Gere[3] also studied the stability of 

arches in uniform compression and in uniform bending. 

Yang and Kuo[4] studied the static stability of curved 

thin-walled beams using the principle of virtual 

displacements in a Lagrangian formulation with 

emphasis place on the effect of curvature, and they 

presented closed-form solutions for arches in uniform 

bending and uniform compression. In addition, 

different approaches were also presented by Kuo and 

Yang[5] to support their studies treating a curved beam 

as the composition of an infinite number of 

infinitesimal straight beams. Recently, Kang and 

Yoo[6] presented a theoretical study on the buckling of 

thin-walled curved beams with the derivation of 

stability equations. Han and Kang[7] also investigated 

the buckling behavior of curved beams neglecting 

rotatory inertia.

In the present work, the DQM which is a rather 

efficient alternate procedure for the solution of partial 

differential equations, introduced by Bellman and 

Casti[8], is use to analyze the in-plane buckling of 

curved beams with extensibility of the arch axis  under 

uniform pressure. The critical loads are calculated for 

the member. The circular beams considered are of 

uniform cross section, and have both ends either 

simply supported or clamped. Numerical results are 

compared with existing exact solutions where available.

2. Differential Equations

The considered uniform circular beam is shown in  

Fig. 1 under a uniform in ward radial pressure q x per 

unit of circumferential length. A point on the centroidal 

axis is defined by the angle θ ,  measured from the 

left support, and the radius of the centroidal axis is R . 

The tangential and radial displacements of the arch axis 

are  and u , respectively. v and β are also the 

displacement at right angles to the plane of the beam 

and the angular rotation of a cross section, respectively. 

These displacements are considered to be positive in 

the directions indicated. The compressive force F z
in 

the beam is q xR . This compressive force may cause 

buckling of the beam either in its plane or out of its 

plane.
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Fig. 1. Coordinate system with radial loads

Fig. 2. Forces on a curved beam

The corresponding buckling equations can be 

deduced from the in-plane vibration equations 

suggested by Timoshenko and Gere[3] in investigating 

the torsional buckling of open section columns. His 

procedure is merely to replace the external load term 

by a fictitious load whose intensity is the load causing 

buckling times the appropriate 'curvature' term. The 

equilibrium conditions of a circular curved beam 

element neglecting shear deformation, undergoing 

in-plane vibration as shown in Fig. 2, give




   




(1)



 

 



(2)




  (3)

Where    and M are the  normal force,  internal 

shear force, and bending moment, respectively. And 

m is the mass per unit length, and  is the time.  

From the elementary theory of beams, the normal force  

and the bending moment  are given

   





 (4)

 










 (5) 

  

Here E is the Young's modulus of elasticity,  is 

the cross sectional area, and I is the area moment of 

inertia of the cross section.

Substituting equations (4) and (5) with equation (3) 

in equations (1) and (2) leads in the following 

differential equations of in-plane vibration of curved 

beams:  




 


″′









 

′





(6)




 


″





″′ 

 


″


′ 



(7)

in which each prime denotes one differentiation with 

respect to the dimensionless distance coordinate  

X=θ/θ 0
, in which θ

0
is the opening angle of the 

member.

On the basis of Timoshenko and Gere[3], the 

buckling equations may be deduced from the equation 

by formally replace the inertial terms suggested by 

Wah[9] 

 → (8)  





→










 (9)
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



→








 (10)

It may be noted that   is the 

in-plane slope, and  is the strain 

of the center line of a beam during bending.

Substituting equations (8), (9), and (10) into 

equations (6) and (7) gives

 


″′













′


 






″



′


(11)




″





″′ 






″


′ 





′





″
     

(12)

Using the length of the arch axis     and 

the radius of gyration of the cross section 

    , the equations (11) and (12) can be 

rewritten with the slenderness ratio 

 


″′









 






 

′










″



′
   

(13)




″





″ ′ 

 






 


″


′ 



 



′





″
 (14)

  

A mathematical study of the in-plane inextensional 

condition of small cross section is carried out starting 

with the basic equations  where there is no extension 

of the center line. This condition requires that w and 

u be related by

u=
∂w
∂θ

(15)

Using the equation (15) and eliminating  in 

equations (11) and (12), one can write the equation as

w
VI

θ 6
0

+2
w
IV

θ 4
0

+
w''
θ 2
0

=

          













″  (16)

The equation (16) is the governing equation of  

in-plane inextensional buckling of the beams.

The boundary conditions for both ends clamped, 

both ends simply supported, and clamped-simply 

supported ends are, respectively, 

w= u= u'= 0    at X=0 and 1 (17)

w= u=M=0    at X=0 and 1 (18) 

w= u= u'= 0    at X=0,

w= u=M=0    at X=1 (19)

                                             

                              

3. Differential Quadrature Method

The differential quadrature method (DQM) was 

introduced by Bellman and Casti[8]. By formulating 

the quadrature rule for a derivative as an analogous 

extension of quadrature for integrals in their 

introductory paper, they proposed the differential 

quadrature method as a new technique for the 

numerical solution of initial value problems of ordinary 

and partial differential equations. It was applied for the 

first time to static analysis of structural components by 

Jang et al.[10]. The versatility of the DQM to 

engineering analysis in general and to structural 

analysis in particular is becoming increasingly evident 

by the related publications of recent years.  Recently, 

Kang and Kim[11], and Kang and  Park[12] studied 

the vibration and the buckling  analysis of asymmetric 

curved beams using DQM, respectively. More recently, 

Kang and Park[13] analyzed the extensional vibration 

of curved beams using DQM. From a mathematical 

point of view, the application of the differential 

quadrature method to a partial differential equation can 

be expressed as follows:



In-Plane Extensional Buckling Analysis of Curved Beams under Uniformly Distributed Radial Loads Using DQM 

269


 

  



  for     (20)

where L denotes a differential operator,    are the 

discrete points considered in the domain,  are the row 

vectors of the  values, 
  are the function values 

at these points,  are the weighting coefficients 

attached to these function values, and  N denotes the 

number of discrete points in the domain. This equation, 

thus, can be expressed as the derivatives of a function 

at a discrete point in terms of the function values at all 

discrete points in the variable domain.

The general form of the function  is taken as


         for    (21)

If the differential operator L represents an n
th  

derivative, then

∑
N

j=1
W ijx

k-1
j =(k-1)(k- 2)⋯(k-n)x k- n- 1i

         for i, k=1,2,...,N (22)

This expression represents N sets of N linear 

algebraic equations, giving a unique solution for the 

weighting coefficients, W ij
, since the coefficient 

matrix is a Vandermonde matrix which always has an 

inverse.

4. Numerical Application

The DQM is applied to the determination of the 

in-plane extensional buckling of the curved beams. The 

differential quadrature approximations of governing 

equations and boundary conditions are shown.

Applying the differential quadrature method to 

equations (13) and (14), gives








  











  




                     




 



  






                      

  










  








  




 (23)








  











  






         


 






  








  




 

         







  











  




 (24)

  

where A ij, B ij, C ij
, and D ij

are the weighting 

coefficients for the first-, second-, third-, and 

fourth-order derivatives, respectively, along the 

dimensionless axis.

The boundary conditions for clamped ends, given by 

equation (17), can be expressed in differential 

quadrature form as follows:

w 1=0               at X= 0

w N=0               at X= 1

u 1=0               at X= 0

u N=0               at X= 1     

∑
N

j= 1
A 2ju j=0         at X= 0+ δ

∑
N

j= 1
A ( N-1)ju j=0     at X= 1- δ (25)

Here, δ denotes a very small distance measured 

along the dimensionless axis from the boundary ends. 

In their work on the application of DQM to the static 

analysis of beams and plates, Jang et al.[10] proposed 

the so-called δ-technique wherein adjacent to the 

boundary points of the differential quadrature chosen 

grid points  at a small distance. This δ approach is 

used to apply more than one boundary condition at a 

given station. 

The boundary condition for simply supported ends 

given by equation (18) can be expressed in differential 

quadrature forms as follows:
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w 1=0                   at X= 0

w N=0                   at X= 1

u 1=0                    at X= 0

u N=0                    at X= 1    

∑
N

j=1
A 2jw j+ ∑

N

j=1
B 2ju j=0 at X= 0+ δ


  



  


  



  
  at X= 1- δ (26)

Similarly, the boundary condition for one clamped 

and one simply supported ends, given by equation (19), 

can be expressed in differential quadrature forms as

w 1=0                    at X= 0

w N=0                    at X= 1

u 1=0                    at X= 0

u N=0                    at X= 1

∑
N

j=1
A 2ju j=0              at X= 0+ δ


  



  


  



  
  at X= 1- δ (27)

This set of equations together with the appropriate 

boundary conditions can be solved for the in-plane 

extensional buckling of the beams.

5. Numerical Results and Comparisons 

In-plane extensional buckling parameter   
  

subjected to uniformly distributed radial loads is  

calculated by the DQM, and the inextensional buckling 

parameter  is also presented together with existing 

exact solutions by Timoshenko and Gere[3]. The value 

q * is evaluated for the case of various end conditions, 

opening angle , and slenderness ratio  . 

Table 1 presents the results of convergence studies 

relative to the number of grid point N and a very 

small distance  for the case of both ends clamped  

with    neglecting extensibility of a curved 

beam arch. The data show that the accuracy of the 

numerical solution increases with increasing N . Then 

numerical instabilities arise if N becomes too small 

(possibly smaller than approx. 9) or too large (possibly 

greater than approx. 14). Table 1 also shows the 

sensitivity of the solution to the choice of δ . The 

solution accuracy also decreases due to numerical 

instabilities if δ becomes too big (possibly greater 

than approx. ×). The optimal value for  is 

found 11 ~ 13, and δ is found to be ×  ~

×, which is obtained from trial-and-error 

calculations. Here, 11 for  and ×  for δ are 

used for all calculations because the exact value of 

buckling parameter for this case  is 8.0 given by 

Timoshenko and Gere[3] (see Table 5).  

In Tables 2~4, the critical buckling parameter 

  
 determined by the DQM for the case of 

both ends clamped, simply supported, and 

clamped-simply supported ends is presented including 

the effect of extensibility of the arch axis. The value of 

the slenderness ratio  is 30, 100, and 300, 

respectively. The first four critical loads of  extensional 

and inextensional buckling parameters for the case of 

both ends clamped with the slenderness ratio  = 

300,   , and    are shown in Table 5. 

The results by the DQM in Tables 2~5 are presented  

without comparisons since no data are available. Tables 

6~8  also show the critical buckling parameters for the 

case of both ends clamped, simply supported, and 

clamped-simply supported ends neglecting the effect of 

extensibility. The results by the DQM are compared 

with  the exact solutions by Timoshenko and Gere[3] 

in Tables 6 and 7.

In Figs. 3~6, the buckling parameters of the beam 

neglecting or including the effect of extensibility with 

both ends clamped (C-C), clamped-simply supported 

(C-S), and simply supported (S-S) are compared with 

each other. The value of the slenderness ratio  is 

50 and 500, and the opening angle  is 90 and 180 

degree, respectively.
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From Tables 2~8, it is seen that the critical buckling 

parameters of the member with clamped ends are much 

higher than those of the member with simply supported 

ends. The buckling parameter can be increased by 

decreasing the opening angle θ
0

and  the slenderness 

ratio . However, When the value of the slenderness 

ratio  is greater than 300, the difference between 

extensional and inextensional buckling values is less 

than 2.0 percent. The variation of  the slenderness ratio 

 affects the buckling behavior of both ends 

clamped boundary condition more significantly than  of 

both ends simply supported boundary condition. The 

values of buckling parameters using extensional theory  

are slightly larger than those using inextensional 

theory. However, the values with rotatory inertia term 

  in equations (11) and (12) are almost the same 

as those without rotatory inertia term shown in 

equation (16) if the value of   is greater than 

1000. The beam behavior  is affected more importantly 

by clamped-clamped end conditions, smaller opening 

angles, and  smaller slenderness ratio due to the effects 

of shear deformation. The shear deformable theory 

which takes into account the rotary inertia and shear 

effects gives a better approximation to the actual beam 

behavior for a thick beam. Therefore, the shear 

deformable beam theory should be considered the next 

research.

Han and Kang[7] calculated the critical buckling 

parameters using inextensional theory given in equation 

(16), and the results are in Tables 6~8. In Tables 6 and 

7, the critical load  is compared with the exact 

solutions by Timoshenko and Gere[3] for the case of 

both ends clamped and simply supported. The DQM 

also shows the excellent agreements with the exact 

solutions by Timoshenko and Gere[3].

From Figs. 3~6, the buckling parameters of the 

member including extensibility are more affected by 

clamped-clamped end conditions than by any other 

boundary conditions. The difference between 

extensional and inextensional buckling values becomes 

larger as the slenderness ratio  becomes smaller.

As it can be seen, the critical values of buckling  

parameters of the beam including extensibility affect 

the beam behavior more importantly. Therefore, the 

buckling analysis of curved beams with extensional 

theory  is necessary for the beam behavior.

Table 1. Critical load of in-plane inextensional buckling

parameter   
 with both ends 

clamped for a range of grid points N and a 

very small distance  ; 
 


 ×

         

9 11.81 11.96 11.84 9.895 8.948

10 10.93 10.67 7.840 8.221 8.064

11 9.831 8.204 8.076 7.990 8.008

12 10.72 10.09 8.002 8.007 8.003

13 8.002 8.683 7.993 7.984 8.085

14 16.31 8.018 7.792 7.857 11.67

Table 2. Critical load of in-plane extensional buckling 

parameter   
 with both ends 

clamped; =11 and  × 



(degree)

  
   



30 100 300

30 295.9 295.8 295.7

60 73.83 73.76 73.76

90 32.71 32.63 32.59

120 18.34 18.27 18.25

150 11.72 11.64 11.63

180 8.158 8.087 8.072

Table 3. Critical load of in-plane extensional buckling 

parameter   
 with both ends 

simply supported; =11 and  × 



(degree)

  
   



30 100 300

30 143.0 142.9 142.4

60 35.03 35.0 35.0

90 15.03 15.0 15.0

120 8.037 8.0 7.995

150 4.495 4.764 4.754

180 3.031 3.004 3.004
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Table 4. Critical load of in-plane extensional buckling 

parameter   
 withboth ends 

clamped-simply supported; =11 and 

 × 



(degree)

  
   



30 100 300

30 226.5 203.3 205.7

60 47.81 50.90 51.10

90 22.01 22.28 22.27

120 12.25 12.24 12.23

150 7.673 7.614 7.624

180 5.184 5.113 5.120

Table 5. The first four critical loads of in-plane 

extensional and inextensional buckling 

parameters,   
 , with both ends 

clamped; =11,    ×, and 

=300



(degree)

(
and 

)


  

  

Extensibility Inextensibility

   

n=1 32.59 8.072 32.46 8.008

n=2 53.39 12.91 52.38 12.68

n=3 82.91 20.18 86.86 21.50

n=4 309.2 82.38 305.9 79.05

Table 6. Critical load of in-plane inextensional 

buckling parameter   
 with both 

ends clamped; =11 and  × 



(degree)

  
           

Timoshenko and Gere[3] DQM

30 294 294.4

60 73.3 73.39

90 32.4 32.46

120 18.1 18.15

150 11.5 11.55

180 8.0 8.008

Table 7. Critical load of in-plane inextensional 

buckling parameter   
 with both 

ends simply supported; =11 and 

 × 



(degree)

  
          

Timoshenko and Gere[3] DQM

30 143 143.0

60 35 35.01

90 15 15.0

120 8 7.997

150 4.76 4.758

180 3.0 3.001

Table 8. Critical load of in-plane inextensional 

buckling parameter   
 with both 

ends clamped-simply supported; =11  

and  × 



(degree)

  
   

DQM

30 205.0

60 50.71

90 22.13

120 12.13

150 7.512

180 5.031
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Fig. 3. Comparisons between extensional and inextensional

critical loads of in-plan buckling parameter 

  
; =11,  ×  , =50, and 

=
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Fig. 4. Comparisons between extensional and inextensional

critical loads of in-plan buckling parameter 

  
; =11,  ×  , =500, 

and  =
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Fig. 5. Comparisons between extensional and inextensional

critical loads of in-plan buckling parameter 

  
; =11,  ×  , =50, and 

 =
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Fig. 6. Comparisons between extensional and inextensional

critical loads of in-plan buckling parameter    

  
; =11,  ×  , =500, 

and  =

6. Conclusions

The DQM was applied to the  computation of the 

eigenvalues of the equations governing the in-plane 

buckling of curved beams under the uniformly 

distributed radial loads including extensibility of a 

beam arch. The present approach gives excellent results 

for the cases treated  while requiring only a limited 

number of grid points: only eleven discrete points were 

used for the evaluation. New results are given for three 

sets of boundary conditions not considered by previous 

investigators for the in-plane extensional buckling 

analysis: clamped-clamped ends, simply-simply 

supported ends, and clamped-simply supported ends.

The present approach gives the followings:

1) The results by the DQM give the mathematical 

precision compared with the exact solutions by 

others for the cases in which they are available.  

2) Only eleven discrete points are used for the 

evaluation. 

3) It requires less than 1.0 second to compile the 

program with IMSL subroutine using a personal 

computer.

4) Diversity of new results according to the opening 

angles, boundary conditions, and slenderness ratio 

is also suggested. Those results can be used in 

the comparisons with other numerical solutions or  

with other experimental test data.
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