Browse > Article
http://dx.doi.org/10.12989/sem.2020.74.2.227

Bi-axial and shear buckling of laminated composite rhombic hypar shells  

Chaubey, Abhay K. (Department of Civil Engineering, Koneru Lakshmaiah Education Foundation)
Raj, Shubham (Department of Civil Engineering, National Institute of Technology Patna)
Tiwari, Pratik (Department of Aerospace Engineering, Indian Institute of Technology Kharagpur)
Kumar, Ajay (Department of Civil Engineering, National Institute of Technology Patna)
Chakrabarti, Anupam (Department of Civil Engineering, Indian Institute of Technology Roorkee)
Pathak, K.K. (Department of Civil Engineering, Indian Institute of Technology (BHU))
Publication Information
Structural Engineering and Mechanics / v.74, no.2, 2020 , pp. 227-241 More about this Journal
Abstract
The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.
Keywords
buckling; composite; finite element method; skew hypar shell;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Khayat, M., Poorveis, D., Moradi, S., and Hemmati, M. (2016), "Buckling of thick deep laminated composite shell of revolution under follower forces", Struct. Eng. Mech., 58(1), 59-91. http://dx.doi.org/10.12989/sem.2016.58.1.059   DOI
2 Khdeir, A.A., and Librescu, L. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part II-Buckling and free vibration", Compos. Struct., 9, 259- 277. https://doi.org/10.1016/0263-8223(88)90048-7   DOI
3 Kumar, A., Bhargava, P., and Chakrabarti, A. (2013), "Vibration of laminated composite skew hypar shells using higher order theory", Thin-Walled Struct., 63, 82-90. https://doi.org/10.1016/j.tws.2012.09.007   DOI
4 Kumar, A. E., Navuri, K., Manideep, K. and Priyanka, M. (2018), "Effect of Thermal Environment on Buckling of Thick Cylinder Subjected to Combined Axial Compressive and External Pressure loads", Materials Today: Proceedings, 5(2), 3298-3305.   DOI
5 Akbulut, H., Gundogdu, O., and Engl, M. (2010), "Buckling behaviors of laminated composite stepped flat columns", Finite Elem. Anal. Des., 46(12), 1061-1067. https://doi.org/10.1016/j.finel.2010.07.004   DOI
6 Ansari, M. I., Kumar, A. and Bandyopadhyaya, R. (2019), "Bending analysis of doubly curved FGM sandwich rhombic conoids", Struct. Eng. Mech., 71(5), 469-483.   DOI
7 Fan, H.G., Chen, Z.P., Feng, W.Z., Zhou, F., Shen, X.L., and Cao, G.W. (2015), "Buckling of axial compressed cylindrical shells with stepwise variable thickness", Struct. Eng. Mech., 54(1), 87- 103. https://doi.org/10.12989/sem.2015.54.1.087   DOI
8 Fares, M.E., and Zenkour, A.M. (1999), "Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories", Compos. Struct., 44, 279- 289. https://doi.org/10.1016/S0263-8223(98)00135-4   DOI
9 Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., and Polit, O. (2011), "Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Compos. Part B Eng., 42(5), 1276-1284. https://doi.org/10.1016/j.compositesb.2011.01.031   DOI
10 Fazzolari, F.A., Banerjee, J.R., and Boscolo, M. (2013), "Buckling of composite plate assemblies using higher order shear deformation theory-An exact method of solution", Thin-Walled Struct., 71, 18-34. https://doi.org/10.1016/j.tws.2013.04.017   DOI
11 Cagdas, I.U. (2011), "Stability analysis of cross-ply laminated shells of revolution using a curved axisymmetric shell finite element", Thin-Walled Struct., 49(6), 732-742. https://doi.org/10.1016/j.tws.2011.01.005   DOI
12 Grover, N., Maiti, D.K., and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012   DOI
13 Hu, H.-T., and Tzeng, W.-L. (2000), "Buckling analysis of skew laminate plates subjected to uniaxial inplane loads", Thin-Walled Struct., 38, 53-77. https://doi.org/10.1016/S0263-8231(00)00029-X   DOI
14 Belkacem, A., Tahar, H.D., Abderrezak, R., Amine Mohamed, B., Mohamed, Z., and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6). https://doi.org/10.12989/sem.2018.66.6.761
15 Chakrabarti, A., and Sheikh, A.H. (2003), "Buckling of Laminated Composite Plates by a New Element Based on Higher Order Shear Deformation Theory", Mech. Adv. Mater. Struct., 10(4), 303-317. https://doi.org/10.1080/10759410306754   DOI
16 Chaubey, A. K., Kumar, A. and Chakrabarti, A. (2019a), "Static analyses of laminated rhombic conoids", Eng. Comput., 36(4), 1346-1363.   DOI
17 Chaubey, A., Kumar, A., Fic, S., Barnat-Hunek, D. and Sadowska-Buraczewska, B. (2019b), "Hygrothermal Analysis of Laminated Composite Skew Conoids", Materials, 12(2), 225.   DOI
18 Chirica, I., and Beznea, E.F. (2012), "Buckling behavior of the multiple delaminated composite plates under shear and axial compression", Comput. Mater. Sci., 64, 173-178. https://doi.org/10.1016/j.commatsci.2012.03.032   DOI
19 Reddy, J.N., and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9   DOI
20 Dash, P., and Singh, B.N. (2012), "Buckling and post-buckling of laminated composite plates", Mech. Res. Commun., 46, 1-7. https://doi.org/10.1016/j.mechrescom.2012.08.002   DOI
21 Sajikumar, K. S., Kumar, N. A. and Rao, B. N. (2019), "Development and validation of finite elements for tubular bonded joints in composite structures", Recent Advances in Materials, Mechanics and Management: Proceedings of the 3rd International Conference on Materials, Mechanics and Management (IMMM 2017), July 13-15, 2017, Trivandrum, Kerala, India, CRC Press, 241.
22 Wang, S. (1997), "Buckling of thin skew fibre-reinforced composite laminates", Thin-Walled Struct., 28(1), 21-41. https://doi.org/10.1016/S0263-8231(97)87375-2   DOI
23 Demirbas, M.D. (2017), "Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity", Compos. Part B Eng., 131, 100-124. https://doi.org/10.1016/j.compositesb.2017.08.005   DOI
24 Eswara Kumar. A, G R Sanjay Krishna, Shahid Afridi. P and Nagaraju M, (2017), "Finite Element Analysis of Laminated Hybrid Composite Pressure Vessels", J. Civil Eng. Technol., 8(4), 916-934.
25 Vescovini, R., and Dozio, L. (2015), "Exact refined buckling solutions for laminated plates under uniaxial and biaxial loads", Compos. Struct., 127, 356-368. https://doi.org/10.1016/j.compstruct.2015.03.003   DOI
26 Wang, Z., and Sun, Q. (2014), "Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness", Acta Mech. Sin., 30(3), 418-429. https://doi.org/10.1007/s10409-014-0009-x   DOI
27 Seifi, R., Khoda-Yari, N., and Hosseini, H. (2012), "Study of critical buckling loads and modes of cross-ply laminated annular plates", Compos. Part B Eng., 43(2), 422-430. https://doi.org/10.1016/j.compositesb.2011.08.051   DOI
28 Ye, H.L., Wang, W.W., Chen, N., and Sui, Y.K. (2017), "Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables", Acta Mech. Sin., 33(5), 899-911. https://doi.org/10.1007/s10409-017-0648-9   DOI
29 Ye, J., and Soldatos, K.P. (1995), "Three-dimensional buckling analysis of laminated composite hollow cylinders and cylindrical panels", Int. J. Solids Struct., 32(13), 1949-1962. https://doi.org/10.1016/0020-7683(94)00217-K   DOI
30 Zhen, W., and Wanji, C. (2007), "Buckling analysis of angle-ply composite and sandwich plates by combination of geometric stiffness matrix", Comput. Mech., 39(6), 839-848. https://doi.org/10.1007/s00466-006-0073-6   DOI
31 Shadmehri, F., Hoa, S. V., and Hojjati, M. (2012), "Buckling of conical composite shells", Compos. Struct., 94(2), 787-792. https://doi.org/10.1016/j.compstruct.2011.09.016   DOI
32 Sharghi, H., Shakouri, M., and Kouchakzadeh, M.A. (2016), "An analytical approach for buckling analysis of generally laminated conical shells under axial compression", Acta Mech., 227(4), 1181-1198. https://doi.org/10.1007/s00707-015-1549-2   DOI
33 Librescu, L., Khdeir, A.A., and Frederick, D. (1989), "A shear deformable theory of laminated composite shallow shell-type panels and their response analysis I: Free vibration and buckling", Acta Mech., 76, 1-33. https://doi.org/10.1007/BF01175794   DOI
34 Liu, L., Chua, L.P., and Ghista, D.N. (2007), "Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates", Compos. Struct., 78, 58-69. https://doi.org/10.1016/j.compstruct.2005.08.010   DOI
35 Matsunaga, H. (2007), "Vibration and stability of cross-ply laminated composite shallow shells subjected to in-plane stresses", Compos. Struct., 78, 377-391. https://doi.org/10.1016/j.compstruct.2005.10.013   DOI
36 Nguyen-Van, H., Mai-Duy, N., Karunasena, W., and Tran-Cong, T. (2011), "Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations", Comput. Struct., 89(7-8), 612- 625. https://doi.org/10.1016/j.compstruc.2011.01.005   DOI
37 Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre Sci. Technol., 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6   DOI
38 Srinivas, S., and Rao, A.K. (1970), "Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solids Struct., 6, 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4   DOI
39 Aydin Komur, M., Sen, F., Atas, A., and Arslan, N. (2010), "Buckling analysis of laminated composite plates with an elliptical/circular cutout using FEM", Adv. Eng. Softw., 41(2), 161-164. https://doi.org/10.1016/j.advengsoft.2009.09.005   DOI
40 Baba, B.O. (2007), "Buckling behavior of laminated composite plates", J. Reinf. Plast. Compos., 26(16), 1637-1655. https://doi.org/10.1177/0731684407079515   DOI
41 Srinivasa, C.V., Suresh, Y.J., and Prema Kumar, W.P. (2012), "Buckling Studies on Laminated Composite Skew Plates", Int. J. Comput. Appl., 37(1), 35-47. https://doi.org/10.5120/4575-6612   DOI
42 Topal, U., and Uzman, U. (2007), "Optimum design of laminated composite plates to maximize buckling load using MFD method", Thin-Walled Struct., 45, 356-368. https://doi.org/10.1016/j.tws.2007.06.002
43 Srinivasa, C. V., Prema Kumar, W.P., Prathap Kumar, M.T., Bangar, A.R., Kumar, P., and Rudresh, M.S. (2017), "Experimental and numerical studies on buckling of laminated composite skew plates with circular holes under uniaxial compression", Mech. Adv. Mater. Struct., 24(4), 304-317. https://doi.org/10.1080/15376494.2016.1142023   DOI
44 Tafreshi, A. (2002), "Buckling and post-buckling analysis of composite cylindrical shells with cutouts subjected to internal pressure and axial compression loads", Int. J. Press. Vessel. Pip. https://doi.org/10.1016/S0308-0161(02)00026-1
45 Tang, Y., and Wang, X. (2011), "Buckling of symmetrically laminated rectangular plates under parabolic edge compressions", Int. J. Mech. Sci., 53(2), 91-97. https://doi.org/10.1016/j.ijmecsci.2010.11.005   DOI
46 Hu, H.T., Yang, C.H., and Lin, F.M. (2006), "Buckling analyses of composite laminate skew plates with material nonlinearity", Compos. Part B Eng., 37, 26-36. https://doi.org/10.1016/j.compositesb.2005.05.004   DOI
47 Pandit, M.K., Singh, B.N., and Sheikh, A.H. (2008), "Buckling of laminated sandwich plates with soft core based on an improved higher order zigzag theory", Thin-Walled Struct., 46(11), 1183-1191. https://doi.org/10.1016/j.tws.2008.03.002   DOI
48 Pradyumna, S., and Bandyopadhyay, J.N. (2010), "Buckling of laminated composite hypars and conoids using a higher-order theory", IES J. Part A Civ. Struct. Eng., 3(2), 85-95. https://doi.org/10.1080/19373260903491958   DOI
49 Reddy, J.N. (1984), "A Simple Higher-Order Theory for Laminated Composite Plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719   DOI
50 Jalan, S. K., Rao, B. N., Murty, S. N. and Gopalakrishnan, S. (2019), "Evaluation of Elastic Properties for a Nanocomposite (Reinforced with SWCNT Agglomerates) Utilizing a Representative Volume Element", Trans. Indian Institute Metals, 72(4), 951-967.   DOI
51 Jian-Fei Chen, and Zheng-An Xu, (1992), "Buckling of compound hyperbolic paraboloidal shells", Thin-Walled Struct., 13, 245- 257. https://doi.org/10.1016/0263-8231(92)90043-V   DOI
52 Khalili, S.M.R., Abbaspour, P., and Malekzadeh Fard, K. (2013), "Buckling of non-ideal simply supported laminated plate on Pasternak foundation", Appl. Math. Comput., 219(12), 6420- 6430. https://doi.org/10.1016/j.amc.2012.12.056   DOI