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Out-of-Plane Buckling Analysis of Curved Beams Considering
Rotatory Inertia Using DQM
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Abstract Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in
considerable effort towards developing an accurate method for analyzing the dynamic behavior of such structures.
The stability behavior of elastic curved beams has been the subject of many investigations. Solutions to the relevant
differential equations have traditionally been obtained by the standard finite difference or finite element methods.
However, these techniques require a great deal of computer time for a large number of discrete nodes with conditions
of complex geometry and loading. One efficient procedure for the solution of partial differential equations is the
differential quadrature method (DQM). This method has been applied to many cases to overcome the difficulties of
complex algorithms and high storage requirements for complex geometry and loading conditions. Out-of-plane
buckling of curved beams with rotatory inertia were analyzed using DQM under uniformly distributed radial loads.
Critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles.
The results were compared with exact results from other methods for available cases. The DQM used only a limited
number of grid points and shows very good agreement with the exact results (less than 0.3% error). New results
according to diverse variation are also suggested, which show important roles in the buckling behavior of curved
beams and can be used for comparisons with other numerical solutions or experimental test data.
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Out—of—Plane Buckling Analysis of Curved Beams Considering Rotatory Inertia Using DQM

1. Introduction

The increasing use of curved beams in buildings,
vehicles, ships, and aircraft has results in considerable
effort being directed toward developing an accurate
method for analyzing the dynamic behavior of such
structures. The stability behavior of elastic curved
beams has been the subject of a large number of
investigations. Solutions of the relevant differential
equations have traditionally been obtained by the
standard finite difference or finite element methods.
These techniques require a great deal of computer time
as the number of discrete nodes becomes relatively
large under conditions of complex geometry and
loading. In a large number of cases, the moderately
accurate solution which can be calculated rapidly is
desired at only a few points in the physical domain.
However, in order to get results with even only limited
accuracy at or near a point of interest for a reasonably
complicated problem, solutions often have dependence
of the accuracy and stability of the mentioned methods
on the nature and refinement of the discretization of
the domain.

Neglecting the warping effect, the elastic stability of
ring segments with a thrust or a pull directed along the
chord was studied by Ojalvo et al.[1]. Vlasov[2] has
obtained closed-form solutions for the stability of an
arch under the in-plane bending and uniformly
distributed radial loads. Both the effects of axial stress
and warping were included by Cheney[3] in the
buckling analysis of rings. Yoo and Pfeiffer[4] derived
the flexural-torsional buckling equations which were
based on a different derivation of the total potential.
and Trahair[5]

expressions for the axial and shear strains of doubly

Papangelis also derived nonlinear
symmetric curved beams form the consideration of the
deformed geometry. Trahair and Papangelis[7]
developed the out-of-plane stability of arches in which
the arches were loaded only in the plane of curvature.
Yang and Kuo[8] presented a set of four differential

equations derived from the principle of virtual
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displacements for curved beams with the web lying
normal to the plane of curvature. In addition, different
approaches were also presented by Kuo and Yang[9]
to support their studies treating a curved beam as the
composition of an infinite number of infinitesimal
straight beams. Recently, Kang and Yoo[10] presented
a theoretical study on the buckling of thin-walled
curved beams with the derivation of stability equations,
and Pi et al.[11] investigated the effect of prebuckling
deformations on flexural-torsional buckling of arches.
Kang and Han[12] studied buckling of arches without
rotatory inertia using the DQM.

A rather efficient alternate procedure for the solution
of partial differential equations is the method of
differential introduced by
Bellman and Casti[13]. This method is used in the

quadrature which was

present work to analyze the out-of-plane buckling of
curved beams including the effect of rotatory inertia
under uniformly distributed radial loads. The critical
loads are calculated for the beams, and results are

compared with existing exact solutions where available.

2. Theoretical Method

The uniform curved beam considered is shown in
Fig. 1 subjected to uniformly distributed radial load

q , per unit of circumferential length. A point on the

centroidal axis is defined by the angle ©, measured
from the left support, and the radius of the centroidal
axis is R. The tangential and radial displacements of
the arch axis are g and 4, respectively. ¢ and [ are
the displacement at right angles to the plane of the
beam and the angular rotation of a cross section,
respectively. These displacements are considered to be
positive in the directions indicated. From Fig. 1, the
compressive force F, in the beam is ¢ R. This
compressive force may cause buckling of the beam
The

corresponding buckling equations can be deduced from

either in its plane or out of its plane.
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the coupled twist-bending vibration equations suggested
by Timoshenko and Gere[6]

torsional buckling of open section columns. His

in investigating the

procedure is merely to replace the external load term
by a fictitious load whose intensity is the load causing
buckling times the appropriate 'curvature' term. The
equations for the free vibrations of curved beams

neglecting warping are:

oM T *
— g T N =0 )
oT M_ mA 9°8 )
Ro R I o
N %
*ﬁ—ﬁL? (3)

Where M, T, and N" are the bending moment, the

torsional moment, and the transverse shear,

respectively. Here 7y is the mass per unit length, A is

the cross sectional area, t is the time, and [ » is the

polar moment of inertia of the cross section.
Differentiating equation (1) once with respect to 6

and substituting equation (3) in the resulting equation

give

oM 8T %
R0k R0 ot @

The equation of the elastic curve of transversely
loaded curved beam without warping is obtained by
expressing curvature and twist in terms of deflection v
and the angle of rotation [. This yields (Tan and
Shore[14])

M 3 1 dwv

B R R ©)
T_1dj, 1 ©
GJI Rd) R do

Where £ is Young's modulus of elasticity, / is the
moment of inertia of cross section, ' is the shear

modulus, and J is the torsion constant. Here £/ and

GJ are the flexural rigidity and the torsional rigidity,
respectively.

Substituting equations (5) and (6) into equations (2)
and (4) leads in the following the differential equations

of out-of-plane vibration of curved beams:

8%

e 7

v ,
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in which each prime denotes one differentiation with

respect to the dimensionless distance coordinate
X=06/6, in which © ; is the opening angle of the
member.

On the basis of Timoshenko and Gere[6], the
buckling equations may be deduced from the equation
by formally replace the inertial terms suggested by

Wah[15]

m—qR )
8% 1 d dv

o w A a0
o%(R3) 1 d  dRB

at @) an

From equations (10) and (11), dv/df is the slope at
right angle to the plane of the beam, and (dRB/ de) is
the rate of change of angle of twist. Thus, the
following set of differential equations can be obtained
for the buckling of a curved beam under uniformly

distributed radial loads.

”
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or
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Ojalvo et al.[1] studied the elastic stability of ring
segments neglecting rotatory inertia in the equation
(13).

The boundary conditions for both ends clamped,
both ends simply supported, and mixed clamped-simply

supported ends are, respectively,

B=yp=19¢" =0 at X=0 and 1 (16)
B=y=1¢ =0 at X=0 and 1 (17)
B=v=10v =0 at X=0,

B=v=10"=( at X=1 (13)

Fig. 1. Coordinate system with radial loads

3. Differential Quadrature Method

A rather efficient alternate procedure for the solution
of partial differential equations is the method of
differential
Bellman and Casti[13]. Jang et al.[16] applied the

quadrature which was introduced by

DQM for the first time to static analysis of structural
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Fig. 2. Forces on a curved beam

components. Recently, Kang and Kim[17], and Kang
and Park[18] studied the vibration and the buckling
analysis of asymmetric curved beams using DQM,
respectively.

The application of the differential quadrature method
to a partial differential equation can be expressed as

follows:

Lfa)}, = Z\] W, f(z;) for i,j=1,1,3,.,N  (19)

ji=1

where L denotes a differential operator, z; are the
discrete points considered in the domain, 7 are the row
vectors of the NV values, f (acj) are the function values

W,

at these points, W, are the weighting coefficients
attached to these function values, and N denotes the
number of discrete points in the domain. This equation,
thus, can be expressed as the derivatives of a function
at a discrete point in terms of the function values at all
discrete points in the variable domain.

The general form of the function f(z) is taken as

f(X0)=X*"1 for k=1,2,3,...V (20)

If the differential operator L represents an th

derivative, then

ZNl Wk 1= (k= 1) (k= 2)-+ (k= m)x "7}

=
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fori, p=1,2,...,N 21

This expression represents N sets of N linear

algebraic equations for the weighting coefficients, ;.

4. Numerical Application

The DQM is applied to the determination of the
out-of-plane buckling of the beams. The differential
quadrature approximations of the governing equations
and boundary conditions are shown.

Applying the differential quadrature method to
equations (14) and (15) gives

1 GT &
TEDIJUI ]EB:/U/
0 7= j=

GJ N q, R N
_ + I)RJ;B’i_yﬁj - ﬂ];f”u“j (22)

AR J
- (E[?”’bj

p  J=1

Ez}}

B G 4’ &
[ ]E 0, =08 === DB (23)

14 j=1 j=1

where B and D

the second- and fourth-order derivatives, respectively,

are the weighting coefficients for

along the dimensionless axis.
The boundary conditions for clamped ends, given by

equation (16), can be expressed in differential

quadrature form as follows:

Bi=0a X=90
By=0a X=1
vi=0at X=0
vy=0at X=1

N
ZlA 2]'7}]':0 atX:O+6
=

N
]ZIA (wv-pv ;=0 atX=1-8 24)
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where A is the weighting coefficients for the first-

order derivatives. Here, & denotes a very small

distance measured along the dimensionless axis from
the boundary ends. In their work on the application of

DQM to the static analysis of beams and plates, Jang

et al.[16] proposed the so-called G-technique wherein
adjacent to the boundary points of the differential

quadrature grid points chosen at a small distance. This

6 approach is used to apply more than one boundary
conditions at a given station.

The boundary conditions for simply supported ends,
given by equation (17), can be expressed in differential

quadrature form as follows:

By=0at X=0
By=0a X=1
v,=0at X=0
vy=0a X=1

N
EIBZJUJZO at}<=0+é
=

N
]ZlB(N,l)jUJZO athl_é (25)

Similarly, the boundary conditions for one clamped
and one simply supported end, given by equation (18),

can be expressed in differential quadrature form as

By=0at X=0
By=0a X=1
v,=0at X=0
vy=0a X=1

SUA v, =0 at X=0+56

=1

N
]ZlB (N*l)jvj:() athl_é (26)

This set of equations together with the appropriate

boundary conditions can be solved for the out-of-plane

buckling of the beams.
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5. Numerical Results and
Comparisons

The out-of-plane buckling parameter ¢ =q, R*/El
subjected to uniformly distributed radial loads is
calculated by the DQM and is presented together with

existing exact solutions by Timoshenko and Gere[6].

*

The value 4 * is evaluated for the case of various end

conditions, opening angles, inertia ratio

]p/ AR?, and stiffness parameter G.J/ EIL

rotatory

Table 1 presents the results of convergence studies
relative to the number of grid point N and a very
small distance 0 for the case of both ends simply
supported with 6, =90" neglecting rotatory inertia.
The data show that the accuracy of the numerical
solution increases with increasing JN. Then numerical
instabilities arise if N becomes too small (possibly
smaller than approx. 6) or too large (possibly greater
than approx. 15). Table 1 also shows the sensitivity of
the solution to the choice of §. The solution accuracy
also decreases due to numerical instabilities if &
becomes too big (possibly greater than approx.
110"%). The optimal value for V is found 8 ~ 11,
and § is found to be 1x 1078 ~1x107°, which is
obtained from trial-and-error calculations. Here, 10 for
N to evaluate the high order buckling values (see
Table 8) and 1x10"% for

calculations. The exact value of buckling parameter for

6 are used for all

this case is 1.80 given by Timoshenko and Gere[6].
In Tables 2~4, the critical buckling parameter
q¢= q..R*/ EI determined by the DQM for the case of
both ends clamped is presented. The used value of
rotatory inertia ratio IP/AR2 is 50, 100, 500, and
1000, and the used value of stiffness parameter G.J/ EI
is 0.5, 1.0, and 1.5, respectively. Tables 5~7 also show
the critical buckling parameter for the case of both
ends simply supported. The first four critical loads of
buckling parameters for the case of both ends clamped

with stiffness parameter G.J/ E/=1.0 and opening angle
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0, =180 are shown in Table 8. The results by the

DQM in Tables 2~8 are presented without comparisons
since no data are available. Tables 9~11 show the
critical buckling parameters for the case of both ends
simply supported for the comparisons with the results
by Timoshenko and Gere[6] neglecting rotatory inertia.
The used value of stiffness parameter G.J/EI is also
0.5, 1.0, and 1.5 for the calculations, respectively.

In Figs. 3~5, the buckling parameters of the beam
neglecting or including the effects of rotatory inertial
with  both clamped (C-C),

supported ends (C-S), and simply supported (S-S) are

ends clamped-simply
compared with each other. The used value of rotatory
inertia ratio [p/ AR? is 50, 100, and 1000, and the used
value of stiffness parameter GJ/EI is 0.5 and 1.5,
respectively, and the opening angle are 90 degree for
the calculations.

From Tables 2~7, it is seen that the critical buckling
parameters of the member with clamped ends are much
higher than those of the member with simply supported
ends. The buckling parameter can be increased by
decreasing the opening angle © ,, by increasing the
stiffness parameter G.J/El, and by increasing rotatory
inertia ratio Ip/ AR?. However, When the value of
rotatory inertia ratio is greater than 500, the difference
of buckling values is less than 2.0 percent. The
variation of the rotatory inertia ratio [p/ AR? affects
the buckling behavior more significantly than the
variation of the stiffness parameter G.J/EI and both
ends clamped boundary condition is also significantly
more affected by than the boundary condition of both
ends simply supported. As the opening angle becomes
smaller, the variation of rotatory inertia ratio 1;)/ AR?
and stiffness parameter G.J/EI affects the buckling
behavior more importantly.

Kang and Han[12]calculated the critical buckling
parameters using Ojalvo et al.[1] theory neglected the
rate of change of angle of twist (d23/df) in equation
(11), and the results are in Tables 9~11. The critical

load q* is compared with the exact solutions by
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Timoshenko and Gere[6] for the case of both ends
simply supported. The values of buckling parameters
including rotatory inertia are lower than the values
inertia. However, The values

neglecting rotatory

including rotatory inertia ]p/ AR? are almost the same
as those neglecting rotatory inertia if the value of
[p/ AR? is greater than 1000. The results by DQM also
show the excellent agreement with the exact solutions
by Timoshenko and Gere[6].

From Figs. 3~5, the buckling parameters of the
member including rotatory inertia with clamped-
clamped ends are more affected by than those with any
other boundary conditions. The difference of the values
including rotatory inertia and neglecting rotatory inertia
becomes larger as rotatory inertia ratio Ip/ AR? and the
stiffness parameter G.J/ EI become smaller.

As it can be seen, the critical value of buckling

Table 1. Critical load of out-of-plane buckling parameter
q iq(_,.Rg/EI with both ends simply supported
for a range of grid points NV and very small
distance ¢ neglecting rotatory inertia; 6,=90"

0=1x

N -

10°° 10°° 1077 10°° 107?
8 1914 1.801 1.800 1.800 1.800
9 2.651 2.036 1.800 1.800 1.800
10 3.382 1.779 1.799 1.800 1.800
11 1.860 1.797 1.750 1.800 1.800
12 1.642 1.659 1.800 1.804 1.799
13 1.941 1.729 1.813 1.866 1.800

Table 2. Critical load of out-of-plane buckling parameter
q= qm,Rg/ EI with both ends clamped including
rotatory inertia; V=10, §= 1x10" 8%, and GJ/EI
=0.5

q =q,.RYEI
o I/AR?
(degree) L

50 100 500 1000
30 24.67 49.02 135.6 138.8
60 21.02 28.73 32.18 3242
90 11.31 12.36 13.02 13.09
120 6.049 6.359 6.586 6.613
150 3.543 3.671 3.770 3.782
180 2224 2.287 2.337 2.343
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parameters of the beam including the effects of rotatory
inertial affects the beam behavior more importantly
than neglecting the effects of rotatory inertial.
Therefore, the buckling analysis of curved beams with

rotatory inertial is necessary.

Table 3. Critical load of out-of-plane buckling parameter
q = q.,R*/ EI with both ends clamped including

rotatory inertia; /N=10, 5=l><10_8, and

GJ/EI = 1.0
q =q,R*EI
o I/AR?
(degree) P
50 100 500 1000
30 48.76 94.07 139.8 140.6
60 29.02 31.80 33.10 33.23
90 12.68 13.19 13.45 13.58
120 6.591 6.774 6.913 6.930
150 3.854 3.936 4.002 4.010
180 2.449 2.492 2.526 2.530
Table 4. Critical load of out-of-plane buckling parameter
q =q, R®/EI with both ends clamped including
rotatory inertia; V=10, =1 %108, and GJ/EI
=1.5
q = q,R*/EI
0, N
(degree) [7’/ AR
50 100 500 1000
30 71.73 123.67 140.6 141.1
60 31.04 32.57 33.42 33.51
90 13.11 13.48 13.74 13.77
120 6.784 6.928 7.039 7.053
150 3.964 4.033 4.087 4.094
180 2.529 2.566 2.596 2.599

Table 5. Critical load of out-of-plane buckling parameter
q =q, R*/EI with both ends simply supported
including rotatory inertia; N=10, d=1x10"5,
and GJ/ET =0.5

q = q,R°/EI
b IJAR?
(degree) P

50 100 500 1000
30 19.69 27.57 31.65 31.96
60 5.083 5.457 5.748 5.783
90 1.385 1.441 1.488 1.494
120 0.350 0.359 0.366 0.367
150 0.054 0.055 0.056 0.056
180 0 0 0 1]
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Table 6.

Critical load of out-of-plane buckling parameter
q :qU.RS/ EI with both ends simply supported

Table 9.

Critical load of out-of-plane buckling parameter
q :qw‘RS/ EI with both ends simply supported

including rotatory inertia; N=10, 0=1 %1078, neglecting rotatory inertia; N=10, 6=1X 1078,
and GJ/EI =1.0 and GJ/EI =0.5
q =q,R*EI ¢ =q,R*EI
0, . bo _
(degrec) L/ AR (degree) GIEL 205
50 100 500 1000 Timoshenko and Gere[6] DQM
30 28.34 3141 32.86 32.99 30 32.24 32.23
60 5.967 6.188 6.359 6.380 60 5.818 5818
90 1.710 1755 1.791 1.796 90 1.50 1.50
120 0.431 0471 0.479 0.480 120 0367 0368
150 0.077 0.078 0.079 0.079 150 0.056 0.056
180 0 0 0 0 180 0 0
Table 7. Critical load of out-of-plane buckling parameter Table 10. Critical load of out-of-plane buckling parameter
q =q,R*/EI with both ends simply supported q =g, R’/ EI with both ends simply supported
including rotatory inertia; N=10, §=1x10"%, neglecting rotatory inertia; N=10, §=1x10"%,
and GJ/EE=15 and GJ/EI =1.0
¢ = q. B EI 0 ¢ =4, R/ Bl
e h/AR (degree) 1 e
50 100 500 1000 Timoshenko and Gere[6] DQM
30 30.66 32.31 33.22 33.32 30 311 33.12
60 6.295 6.462 6.592 6.608 60 640 640
90 1.851 1.890 1.921 1.925 % 1.80 180
120 0.518 0.527 0.534 0.535 120 0480 0481
150 0.090 0.091 0.092 0.092 150 0.07 0.079
180 0 0 0 0 180 0 0
Table 11. Critical load of out-of-plane buckling parameter
Table 8. The first four critical* loads of out-of-plane ¢ =q, R*/EI with both ends simply supported
buckling parameters, ¢ = q,, 2/ El, with both neglecting rotatory inertia; N=10, §=1x10"%,
ends clamped including rotatory inertia; /V=10, and GJ/EI =15
§=1x10"5, and GJ/EI =1.0 ; p
q =q,R°/EI
8, 4, = q.R* EI (de(;ee) GJ/EI =15
(dleSg(r) eoe) [p/ AR? Timoshenko and Gere[6] DQM
50 100 500 1000 30 33.41 33.41
n=1 2.449 2.492 2.526 2.530 60 6.621 6.624
n=. 5.577 5.753 5.889 5.905 90 1.929 1.928
n=3 11.02 11.49 11.82 11.86 120 0.535 0.535
n=4 15.19 16.05 16.61 16.67 150 0.092 0.092
180 0 0
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*18

4" | Buckling with rotatory inertia
16 ] Buckling without rotatory inertia

14

Fig. 3. Comparisons between critical loads of out-of-plane

GJ/EI=0.5 : GJEI=15

3 ﬂll

c-C C-s S-S c-c
End condition

6. Conclusions

The DQM is used to analyze the out-of-plane
buckling of curved beams including the effect of
rotatory inertia under uniformly distributed radial loads.
The critical loads are calculated for the beams, and
results are compared with existing exact solutions
where available. The present approach gives excellent
results for the cases treated using only ten discrete
points. New results are given for two sets of boundary

conditions not considered by previous researchers:

buckling parameter ¢ =q, R*/EI ; N-10, Both ends are clamped-clamped and simply-simply

6=1x10""%, and 6= 90° with I/AR*=50

18
q* | EEEEE Buckling with rotatory inertia
16 4 ]Buckling without rotatory inertia

14

GJ/EI=0.5 : GJEI=15

" i

c-C C-s S-S c-C Cc-s S-S

End condition
Comparisons between critical loads of out-of-
plane buckling parameter q* :qm,Rg/E[ . N
=10, 6=1x10"°, and 6, =90" with /AR’
=100

18
q*  |EEEEE Buckling with rotatory inertia
16 | Buckling without rotatory inertia

14

GJ/EI = 0.5 : GJEI=15

f '
c-c c-s .s] c-c cs s-s
End condition
Comparisons between critical loads of out-of-
plane buckling parameter q :(L_,.R3/E[ ;N
=10, 6=1x10"°%, and 6, =90" with /AR’
=1000

supported.

The present approach gives the followings:

1) The results by the DQM give the mathematical
precision compared with the exact solutions by
others (less than 0.3%).

2) The variation of the rotatory inertia ratio 1;/ AR?
affects the buckling behavior more significantly
than the variation of the stiffness parameter
GJ/EL

3) The critical value of buckling parameters
including the effects of rotatory inertial affects
the beam behavior more importantly than

neglecting the effects of rotatory inertial.
4

~

Variations of the opening angle, boundary
condition, stiffness parameter, and rotatory inertia
are import roles in the buckling behavior of
curved beams.

5) Diversity of new results according to the opening
angles, boundary conditions, stiffness parameter,
and rotatory inertia is also suggested. Those
results can be used in the comparisons with other
numerical solutions or with experimental test
data.
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