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Out-of-Plane Buckling Analysis of Curved Beams Considering 
Rotatory Inertia Using DQM

Ki-jun Kang
Department of Mechanical Engineering, Hoseo University 

 미분구적법(DQM)을 이용 

회전관성을 고려한 곡선 보의 외평면 좌굴해석

강기준
호서대학교 공과대학 기계공학부

Abstract Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in 
considerable effort towards developing an accurate method for analyzing the dynamic behavior of such structures. 
The stability behavior of elastic curved beams has been the subject of many investigations. Solutions to the relevant 
differential equations have traditionally been obtained by the standard finite difference or finite element methods. 
However, these techniques require a great deal of computer time for a large number of discrete nodes with conditions 
of complex geometry and loading. One efficient procedure for the solution of partial differential equations is the 
differential quadrature method (DQM). This method has been applied to many cases to overcome the difficulties of 
complex algorithms and high storage requirements for complex geometry and loading conditions. Out-of-plane 
buckling of curved beams with rotatory inertia were analyzed using DQM under uniformly distributed radial loads. 
Critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. 
The results were compared with exact results from other methods for available cases. The DQM used only a limited 
number of grid points and shows very good agreement with the exact results (less than 0.3% error). New results 
according to diverse variation are also suggested, which show important roles in the buckling behavior of curved 
beams and can be used for comparisons with other numerical solutions or experimental test data.

요  약  빌딩, 자동차, 선박, 항공기 등에서의 곡선보 사용 증가가 이러한 구조물의 동적거동해석에 필요한 정확한 해법 
발전에 괄목할 만한 기여를 해왔다. 탄성곡선보의 안정성거동은 많은 연구자들의 한 과제분야였다. 전통적으로 미분방정식
의 해법은 유한치분법이나 유한요소법으로 해결해왔다. 이러한 방법들은 복잡한 기하학적 구조 및 하중에 따른 격자점의 
증가로 많은 컴퓨팅시간을 요구한다. 편미분방정식의 해를 구하기 위한 효율적인 방법 중의 하나는 미분구적법이다. 복잡한 
기하학적 구조 및 하중 은 컴퓨터 용량을 과도하게 사용할 뿐만 아니라, 복합알고리즘 프로그램을 어렵게 해 이를 극복하기
위하여 미분구적법(DQM)이 많은 분야에 적용되어왔다. DQM을 이용하여 곡선 보의 회전관성을 고려한 외 평면 좌굴을 
등분포하중 하에서 해석하였다. 다양한 매개변수 비, 경계조건, 그리고 열림 각에 따른 임계하중을 계산하였다. DQM 결과는 
활용 가능한 다른 엄밀해와 비교하였다. DQM은 적은 격자점을 사용하고도 엄밀해 결과와 일치함을 보여주었다 (0.3% 미
만). 다양한 변경에 따른 새로운 결과가 또한 제시 되였고, 그 결과는 곡선 보의 좌굴거동에 중요한 역할을 보여주었고, 다른 
수치해석결과 혹은 실험결과비교에 사용될 수 있다.
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1. Introduction

The increasing use of curved beams in buildings, 
vehicles, ships, and aircraft has results in considerable 
effort being directed toward developing an accurate 
method for analyzing the dynamic behavior of such 
structures. The stability behavior of elastic curved 
beams has been the subject of a large number of 
investigations. Solutions of the relevant differential 
equations have traditionally been obtained by the 
standard finite difference or finite element methods. 
These techniques require a great deal of computer time 
as the number of discrete nodes becomes relatively 
large under conditions of complex geometry and 
loading. In a large number of cases, the moderately 
accurate solution which can be calculated rapidly is 
desired at only a few points in the physical domain. 
However, in order to get results with even only limited 
accuracy at or near a point of interest for a reasonably 
complicated problem, solutions often have dependence 
of the accuracy and stability of the mentioned methods 
on the nature and refinement of the discretization of 
the domain.

Neglecting the warping effect, the elastic stability of 
ring segments with a thrust or a pull directed along the 
chord was studied by Ojalvo et al.[1]. Vlasov[2] has 
obtained closed-form solutions for the stability of an 
arch under the in-plane bending and uniformly 
distributed radial loads. Both the effects of axial stress 
and warping were included by Cheney[3] in the 
buckling analysis of rings. Yoo and Pfeiffer[4] derived 
the flexural-torsional buckling equations which were 
based on a different derivation of the total potential. 
Papangelis and Trahair[5] also derived nonlinear 
expressions for the axial and shear strains of doubly 
symmetric curved beams form the consideration of the 
deformed geometry. Trahair and Papangelis[7] 
developed the out-of-plane stability of arches in which 
the arches were loaded only in the plane of curvature. 
Yang and Kuo[8] presented a set of four differential 
equations derived from the principle of virtual 

displacements for curved beams with the web lying 
normal to the plane of curvature. In addition, different 
approaches were also presented by Kuo and Yang[9]
to support their studies treating a curved beam as the 
composition of an infinite number of infinitesimal 
straight beams. Recently, Kang and Yoo[10] presented 
a theoretical study on the buckling of thin-walled 
curved beams with the derivation of stability equations, 
and Pi et al.[11] investigated the effect of prebuckling 
deformations on flexural-torsional buckling of arches. 
Kang and Han[12] studied buckling of arches without 
rotatory inertia using the DQM. 

A rather efficient alternate procedure for the solution 
of partial differential equations is the method of 
differential quadrature which was introduced by 
Bellman and Casti[13]. This method is used in the 
present work to analyze the out-of-plane buckling of 
curved beams including the effect of rotatory inertia 
under uniformly distributed radial loads. The critical 
loads are calculated for the beams, and results are 
compared with existing exact solutions where available.

2. Theoretical Method

The uniform curved beam considered is shown in 
Fig. 1 subjected to uniformly distributed radial load 

q x per unit of circumferential length. A point on the 

centroidal axis is defined by the angle θ , measured 
from the left support, and the radius of the centroidal 

axis is R. The tangential and radial displacements of 

the arch axis are w and u , respectively. v and   are 

the displacement at right angles to the plane of the 
beam and the angular rotation of a cross section, 
respectively. These displacements are considered to be 
positive in the directions indicated. From Fig. 1, the 

compressive force F z
 in the beam is q xR. This 

compressive force may cause buckling of the beam 
either in its plane or out of its plane. The 
corresponding buckling equations can be deduced from 
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the coupled twist-bending vibration equations suggested 
by Timoshenko and Gere[6] in investigating the 
torsional buckling of open section columns. His 
procedure is merely to replace the external load term 
by a fictitious load whose intensity is the load causing 
buckling times the appropriate 'curvature' term. The 
equations for the free vibrations of curved beams 
neglecting warping are:





   (1)









  (2)





  (3)

 

Where   and  are the bending moment, the 
torsional moment, and the transverse shear, 

respectively. Herem is the mass per unit length,  is 

the cross sectional area,  is the time, and I p  is the 

polar moment of inertia of the cross section.

Differentiating equation (1) once with respect to   
and substituting equation (3) in the resulting equation 
give









  (4)

The equation of the elastic curve of transversely 
loaded curved beam without warping is obtained by 
expressing curvature and twist in terms of deflection   
and the angle of rotation  . This yields (Tan and 
Shore[14])



 




  (5)



 








  (6)

Where  is Young's modulus of elasticity,  is the 
moment of inertia of cross section,  is the shear 
modulus, and  is the torsion constant. Here  and 

 are the flexural rigidity and the torsional rigidity, 
respectively.

Substituting equations (5) and (6) into equations (2) 
and (4) leads in the following the differential equations 
of out-of-plane vibration of curved beams:


 





″ 

″″

 (7) 

EI

R
3 (-Rβ+

v''
θ 2
0 )+

GJ

R
3θ 2

0

(v''+Rβ'')  





 (8)

in which each prime denotes one differentiation with 
respect to the dimensionless distance coordinate 

X=θ/θ 0
, in which θ

0
 is the opening angle of the 

member.
On the basis of Timoshenko and Gere[6], the 

buckling equations may be deduced from the equation 
by formally replace the inertial terms suggested by 
Wah[15]

→ (9) 



→






 (10)

 


→







 (11)

From equations (10) and (11),   is the slope at 
right angle to the plane of the beam, and   is 
the rate of change of angle of twist. Thus, the 
following set of differential equations can be obtained 
for the buckling of a curved beam under uniformly 
distributed radial loads.

 


 





″ 

″″ 





″  (12)

EI

R
2 (-Rβ+

v''
θ 2
0 )+

GJ

R
2θ 2

0

(v''+Rβ'')  

 





″ (13) 

or
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Fig. 2. Forces on a curved beam




″″


″


″ 




″ (14)

 - AR
2

I p (v''+ GJ
EI
v'')- AR

3

I p ( GJEI β''-θ
2
0
β)  

 




″ (15)

Ojalvo et al.[1] studied the elastic stability of ring 
segments neglecting rotatory inertia in the equation 
(13).

The boundary conditions for both ends clamped, 
both ends simply supported, and mixed clamped-simply 
supported ends are, respectively, 

β= v= v'= 0  at X=0 and 1 (16)

β= v= v''= 0  at X=0 and 1 (17) 

β= v= v'= 0  at X=0,

β= v= v''= 0  at X=1 (18)

 

Fig. 1. Coordinate system with radial loads

 

3. Differential Quadrature Method

A rather efficient alternate procedure for the solution 
of partial differential equations is the method of 
differential quadrature which was introduced by 
Bellman and Casti[13]. Jang et al.[16] applied the 
DQM for the first time to static analysis of structural 

components. Recently, Kang and Kim[17], and Kang 
and Park[18] studied the vibration and the buckling 
analysis of asymmetric curved beams using DQM, 
respectively. 

The application of the differential quadrature method 
to a partial differential equation can be expressed as 
follows:

  
 



  for     (19)

where L denotes a differential operator,  are the 

discrete points considered in the domain,  are the row 
vectors of the  values,  are the function values 

at these points,  are the weighting coefficients 

attached to these function values, and N denotes the 
number of discrete points in the domain. This equation, 
thus, can be expressed as the derivatives of a function 
at a discrete point in terms of the function values at all 
discrete points in the variable domain.

The general form of the function  is taken as

  
   for   (20)

If the differential operator L represents an n th 

derivative, then

∑
N

j= 1
W ijx

k- 1
j =(k-1)(k- 2)⋯(k-n)x k- n- 1i
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 for i, k= 1,2,...,N  (21)

This expression represents N sets of N linear 
algebraic equations for the weighting coefficients, .

4. Numerical Application

The DQM is applied to the determination of the 
out-of-plane buckling of the beams. The differential 
quadrature approximations of the governing equations 
and boundary conditions are shown.

Applying the differential quadrature method to 
equations (14) and (15) gives






 



 


 









 



 





 



 (22)





 



 


 



 







 



 
  





 



 (23) 

where B ij
 and D ij

 are the weighting coefficients for 

the second- and fourth-order derivatives, respectively, 
along the dimensionless axis.

The boundary conditions for clamped ends, given by 
equation (16), can be expressed in differential 
quadrature form as follows:

β
1= 0  at X= 0

β
N=0  at X= 1

v 1= 0  at X= 0

v N=0  at X= 1  

∑
N

j= 1
A 2jv j=0  at X= 0+ δ

∑
N

j= 1
A (N- 1)jv j=0  at X= 1- δ (24)

where A ij
 is the weighting coefficients for the first- 

order derivatives. Here, δ denotes a very small 

distance measured along the dimensionless axis from 
the boundary ends. In their work on the application of 
DQM to the static analysis of beams and plates, Jang 

et al.[16] proposed the so-called δ-technique wherein 

adjacent to the boundary points of the differential 
quadrature grid points chosen at a small distance. This 

δ approach is used to apply more than one boundary 

conditions at a given station. 
The boundary conditions for simply supported ends, 

given by equation (17), can be expressed in differential 
quadrature form as follows:

β
1= 0  at X= 0

β
N=0  at X= 1

v 1= 0  at X= 0

v N=0  at X= 1  

∑
N

j= 1
B 2jv j=0  at X= 0+ δ

∑
N

j= 1
B (N- 1)jv j=0  at X= 1- δ (25)

Similarly, the boundary conditions for one clamped 
and one simply supported end, given by equation (18), 
can be expressed in differential quadrature form as

β
1= 0  at X= 0

β
N=0  at X= 1

v 1= 0  at X= 0

v N=0  at X= 1  

∑
N

j= 1
A 2jv j=0  at X= 0+ δ  

∑
N

j= 1
B (N- 1)jv j=0  at X= 1- δ  (26)

This set of equations together with the appropriate 
boundary conditions can be solved for the out-of-plane 
buckling of the beams.
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5. Numerical Results and

Comparisons 

The out-of-plane buckling parameter     

subjected to uniformly distributed radial loads is 
calculated by the DQM and is presented together with 
existing exact solutions by Timoshenko and Gere[6]. 

The value q *  is evaluated for the case of various end 
conditions, opening angles, rotatory inertia ratio 


, and stiffness parameter . 

Table 1 presents the results of convergence studies 

relative to the number of grid point N and a very 

small distance  for the case of both ends simply 
supported with    neglecting rotatory inertia. 

The data show that the accuracy of the numerical 

solution increases with increasing N. Then numerical 

instabilities arise if N becomes too small (possibly 

smaller than approx. 6) or too large (possibly greater 
than approx. 15). Table 1 also shows the sensitivity of 

the solution to the choice of δ . The solution accuracy 

also decreases due to numerical instabilities if δ  

becomes too big (possibly greater than approx. 

×). The optimal value for  is found 8 ~ 11, 

and δ  is found to be × ~×, which is 
obtained from trial-and-error calculations. Here, 10 for 
 to evaluate the high order buckling values (see 

Table 8) and × for δ  are used for all 
calculations. The exact value of buckling parameter for 
this case is 1.80 given by Timoshenko and Gere[6]. 

In Tables 2~4, the critical buckling parameter 

  
 determined by the DQM for the case of 

both ends clamped is presented. The used value of 

rotatory inertia ratio 
 is 50, 100, 500, and 

1000, and the used value of stiffness parameter  
is 0.5, 1.0, and 1.5, respectively. Tables 5~7 also show 
the critical buckling parameter for the case of both 
ends simply supported. The first four critical loads of 
buckling parameters for the case of both ends clamped 
with stiffness parameter =1.0 and opening angle 

  
 are shown in Table 8. The results by the 

DQM in Tables 2~8 are presented without comparisons 
since no data are available. Tables 9~11 show the 
critical buckling parameters for the case of both ends 
simply supported for the comparisons with the results 
by Timoshenko and Gere[6] neglecting rotatory inertia. 
The used value of stiffness parameter  is also 
0.5, 1.0, and 1.5 for the calculations, respectively.

In Figs. 3~5, the buckling parameters of the beam 
neglecting or including the effects of rotatory inertial 
with both ends clamped (C-C), clamped-simply 
supported ends (C-S), and simply supported (S-S) are 
compared with each other. The used value of rotatory 

inertia ratio 
 is 50, 100, and 1000, and the used 

value of stiffness parameter  is 0.5 and 1.5, 
respectively, and the opening angle are 90 degree for 
the calculations.

From Tables 2~7, it is seen that the critical buckling 
parameters of the member with clamped ends are much 
higher than those of the member with simply supported 
ends. The buckling parameter can be increased by 

decreasing the opening angle θ
0
, by increasing the 

stiffness parameter , and by increasing rotatory 

inertia ratio 
. However, When the value of 

rotatory inertia ratio is greater than 500, the difference 
of buckling values is less than 2.0 percent. The 

variation of the rotatory inertia ratio 
 affects 

the buckling behavior more significantly than the 
variation of the stiffness parameter , and both 
ends clamped boundary condition is also significantly 
more affected by than the boundary condition of both 
ends simply supported. As the opening angle becomes 

smaller, the variation of rotatory inertia ratio 
 

and stiffness parameter  affects the buckling 
behavior more importantly. 

Kang and Han[12]calculated the critical buckling 
parameters using Ojalvo et al.[1] theory neglected the 
rate of change of angle of twist   in equation 
(11), and the results are in Tables 9~11. The critical 

load   is compared with the exact solutions by 
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Table 1. Critical load of out-of-plane buckling parameter
  

  with both ends simply supported

for a range of grid points N  and very small
distance  neglecting rotatory inertia;  

 
 ×

    

8 1.914 1.801 1.800 1.800 1.800

9 2.651 2.036 1.800 1.800 1.800

10 3.382 1.779 1.799 1.800 1.800

11 1.860 1.797 1.750 1.800 1.800

12 1.642 1.659 1.800 1.804 1.799

13 1.941 1.729 1.813 1.866 1.800

Table 2. Critical load of out-of-plane buckling parameter
  

  with both ends clamped including

rotatory inertia; =10,  ×  , and 
=0.5


(degree)

  
  

 


50 100 500 1000
30 24.67 49.02 135.6 138.8
60 21.02 28.73 32.18 32.42
90 11.31 12.36 13.02 13.09
120 6.049 6.359 6.586 6.613
150 3.543 3.671 3.770 3.782
180 2.224 2.287 2.337 2.343

Timoshenko and Gere[6] for the case of both ends 
simply supported. The values of buckling parameters 
including rotatory inertia are lower than the values 
neglecting rotatory inertia. However, The values 

including rotatory inertia 
 are almost the same 

as those neglecting rotatory inertia if the value of 


 is greater than 1000. The results by DQM also 

show the excellent agreement with the exact solutions 
by Timoshenko and Gere[6].

From Figs. 3~5, the buckling parameters of the 
member including rotatory inertia with clamped- 
clamped ends are more affected by than those with any 
other boundary conditions. The difference of the values 
including rotatory inertia and neglecting rotatory inertia 

becomes larger as rotatory inertia ratio 
 and the 

stiffness parameter  become smaller.
As it can be seen, the critical value of buckling 

parameters of the beam including the effects of rotatory 
inertial affects the beam behavior more importantly 
than neglecting the effects of rotatory inertial. 
Therefore, the buckling analysis of curved beams with 
rotatory inertial is necessary.

Table 3. Critical load of out-of-plane buckling parameter 
  

  with both ends clamped including 

rotatory inertia; =10,  ×, and 
  = 1.0


(degree)

  
  

 


50 100 500 1000
30 48.76 94.07 139.8 140.6
60 29.02 31.80 33.10 33.23
90 12.68 13.19 13.45 13.58
120 6.591 6.774 6.913 6.930
150 3.854 3.936 4.002 4.010
180 2.449 2.492 2.526 2.530

Table 4. Critical load of out-of-plane buckling parameter 
  

  with both ends clamped including 

rotatory inertia; =10,  ×  , and   
=1.5


(degree)

  
  

 


50 100 500 1000
30 71.73 123.67 140.6 141.1
60 31.04 32.57 33.42 33.51
90 13.11 13.48 13.74 13.77
120 6.784 6.928 7.039 7.053
150 3.964 4.033 4.087 4.094
180 2.529 2.566 2.596 2.599

Table 5. Critical load of out-of-plane buckling parameter 
  

  with both ends simply supported 

including rotatory inertia; =10,  ×  , 
and   =0.5


(degree)

  
  

 


50 100 500 1000
30 19.69 27.57 31.65 31.96
60 5.083 5.457 5.748 5.783
90 1.385 1.441 1.488 1.494
120 0.350 0.359 0.366 0.367
150 0.054 0.055 0.056 0.056
180 0 0 0 0
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 
(degree)



  

  

 


50 100 500 1000

n=1 2.449 2.492 2.526 2.530

n=2 5.577 5.753 5.889 5.905

n=3 11.02 11.49 11.82 11.86

n=4 15.19 16.05 16.61 16.67

Table 6. Critical load of out-of-plane buckling parameter 
  

  with both ends simply supported 

including rotatory inertia; =10,  ×  , 
and   =1.0


(degree)

  
  

 


50 100 500 1000

30 28.34 31.41 32.86 32.99

60 5.967 6.188 6.359 6.380

90 1.710 1.755 1.791 1.796

120 0.431 0.471 0.479 0.480

150 0.077 0.078 0.079 0.079

180 0 0 0 0

Table 7. Critical load of out-of-plane buckling parameter 
  

  with both ends simply supported 

including rotatory inertia; =10,  ×  , 
and =1.5


(degree)

  
  

 


50 100 500 1000

30 30.66 32.31 33.22 33.32

60 6.295 6.462 6.592 6.608

90 1.851 1.890 1.921 1.925

120 0.518 0.527 0.534 0.535

150 0.090 0.091 0.092 0.092

180 0 0 0 0

Table 8. The first four critical loads of out-of-plane 
buckling parameters,   

 , with both 
ends clamped including rotatory inertia; =10, 
 ×, and   =1.0

Table 9. Critical load of out-of-plane buckling parameter 
  

  with both ends simply supported 

neglecting rotatory inertia; =10,  ×  , 
and   =0.5


(degree)

  
  

   =0.5

Timoshenko and Gere[6]  DQM

30 32.24 32.23

60 5.818 5.818

90 1.50 1.50

120 0.367 0.368

150 0.056 0.056

180 0 0

Table 10. Critical load of out-of-plane buckling parameter 
  

  with both ends simply supported 

neglecting rotatory inertia; =10,  ×  , 
and   =1.0


(degree)

  
  

   =1.0

Timoshenko and Gere[6]  DQM

30 33.11 33.12

60 6.40 6.40

90 1.80 1.80

120 0.480 0.481

150 0.079 0.079

180 0 0

Table 11. Critical load of out-of-plane buckling parameter 
  

  with both ends simply supported 

neglecting rotatory inertia; =10,  ×  , 
and   =1.5


(degree)

  
  

   =1.5

Timoshenko and Gere[6]  DQM

30 33.41 33.41

60 6.621 6.624

90 1.929 1.928

120 0.535 0.535

150 0.092 0.092

180 0 0
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Fig. 3. Comparisons between critical loads of out-of-plane
buckling parameter   

  ; =10, 

 ×  , and =   with 
=50
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Fig. 4. Comparisons between critical loads of out-of- 
plane buckling parameter   

  ; 
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
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Fig. 5. Comparisons between critical loads of out-of-
plane buckling parameter   

  ; 

=10,  ×  , and   =  with 


=1000 

 

6. Conclusions

The DQM is used to analyze the out-of-plane 
buckling of curved beams including the effect of 
rotatory inertia under uniformly distributed radial loads. 
The critical loads are calculated for the beams, and 
results are compared with existing exact solutions 
where available. The present approach gives excellent 
results for the cases treated using only ten discrete 
points. New results are given for two sets of boundary 
conditions not considered by previous researchers: 
Both ends are clamped-clamped and simply-simply 
supported.

The present approach gives the followings:
1) The results by the DQM give the mathematical 

precision compared with the exact solutions by 
others (less than 0.3%). 

2) The variation of the rotatory inertia ratio 
 

affects the buckling behavior more significantly 
than the variation of the stiffness parameter 
.

3) The critical value of buckling parameters 
including the effects of rotatory inertial affects 
the beam behavior more importantly than 
neglecting the effects of rotatory inertial.

4) Variations of the opening angle, boundary 
condition, stiffness parameter, and rotatory inertia 
are import roles in the buckling behavior of 
curved beams. 

5) Diversity of new results according to the opening 
angles, boundary conditions, stiffness parameter, 
and rotatory inertia is also suggested. Those 
results can be used in the comparisons with other 
numerical solutions or with experimental test 
data.
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