• Title/Summary/Keyword: Neumann boundary value problem

Search Result 19, Processing Time 0.023 seconds

UNIQUENESS OF IDENTIFYING THE CONVECTION TERM

  • Cheng, Jin;Gen Nakamura;Erkki Somersalo
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.405-413
    • /
    • 2001
  • The inverse boundary value problem for the steady state heat equation with convection term is considered in a simply connected bounded domain with smooth boundary. Taking the Dirichlet to Neumann map which maps the temperature on the boundary to the that flux on the boundary as an observation data, the global uniqueness for identifying the convection term from the Dirichlet to Neumann map is proved.

  • PDF

An Existence Result for Neumann Type Boundary Value Problems for Second Order Nonlinear Functional Differential Equation

  • Liu, Yuji
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.637-650
    • /
    • 2008
  • New sufficient conditions for the existence of at least one solution of Neumann type boundary value problems for second order nonlinear differential equations $$\array{\{{p(t)\phi(x'(t)))'=f(t,x(t),\;x(\tau_1(t)),\;{\cdots},\;x(\tau_m(t))),\;t\in[0,T],\\x'(0)=0,\;x'(T)=0,}\,}$$, are established.

A NUMERICAL METHOD FOR THE PROBLEM OF COEFFICIENT IDENTIFICATION OF THE WAVE EQUATION BASED ON A LOCAL OBSERVATION ON THE BOUNDARY

  • Shirota, Kenji
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.509-518
    • /
    • 2001
  • The purpose of this paper is to propose a numerical algorithm for the problem of coefficient identification of the scalar wave equation based on a local observation on the boundary: Determine the unknown coefficient function with the knowledge of simultaneous Dirichlet and Neumann boundary values on a part of boundary. To find the unknown coefficient function, the unknown Neumann boundary value is also identified. We recast our inverse problem to variational problem. The gradient method is applied to find the minimizing functions. We confirm the effectiveness of our algorithm by numerical experiments.

  • PDF

ANALYSIS OF SOME NONLOCAL BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FEEDBACK CONTROL

  • Lee, Hyung-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.325-338
    • /
    • 1998
  • Some nonlocal boundary value problems which arise from a feedback control problem are considered. We give a precise statement of the mathematical problems and then prove the existence and uniqueness of the solutions. We consider the Dirichlet type boundary value problem and the Neumann type boundary value problem with nonlinear boundary conditions. We also provide a regularity results for the solutions.

  • PDF

AN SDFEM FOR A CONVECTION-DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITION AND DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.31-48
    • /
    • 2010
  • In this article, we consider singularly perturbed Boundary Value Problems(BVPs) for second order Ordinary Differential Equations (ODEs) with Neumann boundary condition and discontinuous source term. A parameter-uniform error bound for the solution is established using the Streamline-Diffusion Finite Element Method (SDFEM) on a piecewise uniform meshes. We prove that the method is almost second order of convergence in the maximum norm, independently of the perturbation parameter. Further we derive superconvergence results for scaled derivatives of solution of the same problem. Numerical results are provided to substantiate the theoretical results.

NOTE ON LOCAL ESTIMATES FOR WEAK SOLUTION OF BOUNDARY VALUE PROBLEM FOR SECOND ORDER PARABOLIC EQUATION

  • Choi, Jongkeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1123-1148
    • /
    • 2016
  • The aim of this note is to provide detailed proofs for local estimates near the boundary for weak solutions of second order parabolic equations in divergence form with time-dependent measurable coefficients subject to Neumann boundary condition. The corresponding parabolic equations with Dirichlet boundary condition are also considered.

Positive Solutions of Nonlinear Neumann Boundary Value Problems with Sign-Changing Green's Function

  • Elsanosi, Mohammed Elnagi M.
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • This paper is concerned with the existence of positive solutions of the nonlinear Neumann boundary value problems $$\{u^{{\prime}{\prime}}+a(t)u={\lambda}b(t)f(u),\;t{\in}(0,1),\\u^{\prime}(0)=u^{\prime}(1)=0$$, where $a,b{\in}C[0,1]$ with $a(t)>0,\;b(t){\geq}0$ and the Green's function of the linear problem $$\{u^{{\prime}{\prime}}+a(t)u=0,\;t{\in}(0,1),\\u^{\prime}(0)=u^{\prime}(1)=0$$ may change its sign on $[0,1]{\times}[0,1]$. Our analysis relies on the Leray-Schauder fixed point theorem.

Properties of integral operators in complex variable boundary integral equation in plane elasticity

  • Chen, Y.Z.;Wang, Z.X.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.495-519
    • /
    • 2013
  • This paper investigates properties of integral operators in complex variable boundary integral equation in plane elasticity, which is derived from the Somigliana identity in the complex variable form. The generalized Sokhotski-Plemelj's formulae are used to obtain the BIE in complex variable. The properties of some integral operators in the interior problem are studied in detail. The Neumann and Dirichlet problems are analyzed. The prior condition for solution is studied. The solvability of the formulated problems is addressed. Similar analysis is carried out for the exterior problem. It is found that the properties of some integral operators in the exterior boundary value problem (BVP) are quite different from their counterparts in the interior BVP.

A novel technique for removing the rigid body motion in interior BVP of plane elasticity

  • Y. Z. Chen
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2024
  • The aim of this paper is to remove the rigid body motion in the interior boundary value problem (BVP) of plane elasticity by solving the interior and exterior BVPs simultaneously. First, we formulate the interior and exterior BVPs simultaneously. The tractions applied on the contour in two problems are the same. After adding and subtracting the two boundary integral equations (BIEs), we will obtain a couple of BIEs. In the coupled BIEs, the properties of relevant integral operators are modified, and those integral operators are generally invertible. Finally, a unique solution for boundary displacement of interior region can be obtained.