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NOTE ON LOCAL ESTIMATES FOR WEAK SOLUTION OF
BOUNDARY VALUE PROBLEM FOR SECOND ORDER
PARABOLIC EQUATION

JONGKEUN CHOI

ABSTRACT. The aim of this note is to provide detailed proofs for local
estimates near the boundary for weak solutions of second order parabolic
equations in divergence form with time-dependent measurable coefficients
subject to Neumann boundary condition. The corresponding parabolic
equations with Dirichlet boundary condition are also considered.

1. Introduction and main results

Local boundedness and local Holder continuity for weak solutions of ellip-
tic or parabolic equations with bounded measurable coefficients are very well
known and usually referred to as De Giorgi-Moser-Nash theory. There are a
large number of references regarding this theory. One of most popular reference
for elliptic equations is a book by Gilbarg and Trudinger [4]. We also refer the
reader to [3] for elliptic equations with Dirichlet boundary condition as well as
Neumann boundary condition. Recently, in [5] the author provide a detailed
proof for local boundedness estimate near the boundary for weak solutions of
Neumann problem for elliptic equation. The corresponding result for parabolic
equation with Neumann boundary condition is of course well known to expert.
However, it is very hard to locate a specific reference in the existing literature.
There is rich literature discussing conormal boundary conditions, for example
[6, 7], but none of them contains the exact local boundedness estimate and
local Holder estimate.

In this note, we give detailed proofs for local boundedness estimates and
local Holder estimates near the boundary for weak solutions of second order
parabolic equations in divergence form with bounded measurable coefficients
subject to Neumann boundary condition. We also consider the local estimates
for weak solutions of parabolic equations with Dirichlet boundary condition.
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1124 J. CHOI

Throughout the note (except Theorem 1.5), we use §2 to denote a Sobolev
extension domain in R? (d > 2); i.e., there exists a linear operator E : Wy (Q) —
WJ(R?) such that for any u € W4 () we have

LD Bullpyen < Eollulliaey and  [Bulwis < Sllulwyo):
where W3 (Q) is the usual Sobolev space. Such domains include bounded Lip-
schitz domains, Lipschitz graph domains, and locally uniform domains (see
Rogers [8]). We let
Q=Qx(a,b) and S =09 x (a,d),
where —o0 < a < b < oo. For any (z,t) € Q x (a,b) and r > 0, we write
Q- (z) = QN B.(x),

Qr(z,t) = QN (Br(x) x (t —r* 1)),
Sp(z,t) =S NQ(x,1),

where B,.(z) is the usual Euclidean ball of radius r centered at x.

To avoid confusion, spaces of functions defined on Q = Q x (a,b) C R+ will
be always written in script letters throughout the note. We write u € €>°(Q) if
w is an infinitely differentiable function on R?*! with a compact support in Q.
For p,q > 1, we let .Z, 4(Q) is the Banach space consisting of all measurable

functions on @ with a finite norm

lull #, @) = (/ab </Q|u(:13,t)|p dx) " dt)

%,»(Q) will be denoted by .%,(Q). By €/%(Q), a € (0,1], we denote the
set of all bounded measurable functions v on @ for which |u|q,q/2:q is finite,
where we define the parabolic Holder norm as follows:

1/q

Ul a,0/2:Q = [Ulavsa/2: + [UuloQ
lu(z, t) — u(y, s)|

= sup + sup |u(z,t)].
@), (g.9eq [T = yl* + |t =s|*? " @peq
(z,t)#(y,s)

The space Wpl’O(Q) denotes the Banach space with the norm
l[ully0q) = llullz,@ + 1 Deull 2,
and #,1'(Q) denotes the Banach space with the norm
lully1qy = lullzy@) + 1Datll2,@) + luel ,(0)-
The space %,°(Q) is obtained by completing the set #4"'(Q) with the norm
lell 0y = max fluC, Ol o) + 1 Drull. 2 @)
We consider the parabolic operator
Pu = uy — Di(Aiiju + Aiu) + B*Du + Cu.
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Here, the leading coefficients A% = A% (z,t) are bounded measurable functions
defined on R4 such that for any (z,t) € R¥! and ¢, € R?, we have

d d
(12) AP < D AY(z,0)&8 and Y [AY (2, 0)Em;| < AHEInl,

ij=1 1,5=1
where A is a positive constant. We denote
A= (AY...,AY and B=(B!,...,B%),
and let A, B € Z(Q)? and C € £ (Q). For F = (F',..., F%) € £(Q)% and
f € Z(Q), we say that u € %,"°(Q) is a weak solution of the problem
Pu=divF+ f in Q,
{ (AYDju+ A'u+ F')n; =0 on S,
if u satisfies for all ¢t; € [a, b] that

(1.3)
t1 31 .. .
/u(m,tl)v(ac,tl)dx—/ /uvtdacdt—i—/ /(A”Dju—l—Azu)Divdxdt
Q a JQ a JQ

t1 ) t1 )
Jr/ /(BZDiu + Cu)vdx dt = / / —F'Djv+ fodzdt
a JQ a JQ

for all v € €2°(Q) that are equal to zero for t = a.

1.1. Boundedness of solutions

The first main result is about the local boundedness up to the boundary for
weak solutions of

Pu=divF + f in Q,
1.4 . ) )
(14) (AYDju+ A'u+ F*)n; =0 on S.
Theorem 1.1. Let Q = Q x (a,b), where Q is a Sobolev extension domain in
R?. Assume that

D= ||A| +|B| +|C|*/? < oo,

ngo,qg(@)
M= Flz, @ T 1fll2,,.,@ < oo

(1.5) po>d, qo>2,
d 2
p1 > da Q> 27 and +

Pmin Gmin

<1,

p2 > g2 > 1,

5)
where we use the notation

Pmin = min (pOa P1, 2172) and Qmin = min ((ZO, q1, 2(12) .
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If u € ,°°(Q) is a weak solution of (1.4), then there exists a constant 0 <
Ry < min (1, Vb — a), depending only on d, X\, &, pi, ¢, and D, such that for
any o €Q and 0 < r < Ry, we have

_d+2 1—d 2
[l 2e(@ryo) < Nv7 2 [Jull gy + Nromot " [Fllg,, (@)
(1.6)

d _ 2

_d_ 2
+ NPT fllg, @)
where QT = QT(:C()vb) and N = N(da /\750apia%')'

Remark 1.1. By using a standard covering argument, it is easy to see that the
constant Ry in Theorem 1.1 is interchangeable with ¢ - Ry for any ¢ € (0, 00)
satisfying ¢ - Ry < v/b — a, possibly at the cost of changing the constant N in
the theorem by K - N, where K = (d,¢) > 0.

Remark 1.2. Let 2o € Q and 0 < 7 < /b — a. We say that u € %,"°(Q, (0, b))
is a weak solution of

Pu=divF + f in Q.(xo,b),

(AYDju+ A"+ F)n; =0 on S,(xo,b),
if u satisfies (1.3) for all t; € [b—72,b] and v € €>°(Q, (w0, b) U S,-(w0,b)). We
note that the estimate (1.6) is local in nature. In fact, u € ¥5"%(Q,(x0,b)) is a

weak solution of (1.7), then the same proof will show that the estimate (1.6)
still holds. Therefore, we verify that condition (A3) of [1] holds.

(1.7)

Remark 1.3. We say that v € %,°(Q) is a weak solution of the (backward)
problem

(1.8) — s — Di(AYDju+ A'u) + B'Diu+ Cu=divF + f in Q,
' (Aiiju + A"+ F)n; =0 on S,
if u satisfies for all ¢; € [a, b] that

b b
/u(m,tl)v(x,tl)dx—l—// vy dacdt—i—//(Aiiju—i—Aiu)Divd:Edt
2 t1JQ t1JQ

<
b ' b '
+//(BlDiu+Cu)vdxdt://—FlDiv—l—fvd:Edt
t1JQ t1JQ

for all v € €2°(Q) that are equal to zero for ¢t = b. By repeating essentially the

same argument as in the proof of Theorem 1.1, if u € ”//21’2(62) is a weak solution
of (1.8), then the estimate (1.6) holds, provided that Q, = Q,(zo) x (b —r?,b)
is replaced by Q.,.(zg) x (a,a + 7?).

Remark 1.4. Similar to [1, Remark 3.19], by setting u = 1, AY = §;;, A =
B=F=0,and C = f=0in (1.4), we get from (1.6) that

(1.9) |9 (20)| > Or?, VaoeQ, Vre (0, Ro],
where 0 = 0(d, &).
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Remark 1.5. In [2], the author claims that if the (Neumann) Green function of
the parabolic operator P satisfies the Gaussian upper bound

Gz, t;y,s) < ¢ Mt — s) "2 exp{—clz — y|?/4(t — )},
then the following local boundedness property holds: if u is a weak solution of
Pu=0 in Q,
{ (AYDju+ A'u)n; =0 on S,
then u satisfies

(1.10)

+2

_d+2 _
ull ey < N~ (Il i@any + 7 Nl 24055 ) -

To show (1.10), the author claims that the boundary integral term in [2, Eq.
(11)] is bounded by the second term in the right hand side of (1.10). However,
by Theorem 1.1, the weak solution u satisfies

_dt2
(1.11) lull 2o(@ry < Nr777 |Jull 2y (@an)-

Indeed, the boundary integral term in [2, Eq. (11)] is cancelled out in the weak
formulation of the problem, and by using the Gaussian upper bound, it is not
hard to see that u satisfies (1.11); see the proof of [1, Theorem 3.24]. Therefore,
the local boundedness property (1.10)

_ 446
(o Null zai@n < N1~ lull zu(qun )
is not optimal.

Next we consider the local boundedness estimates for weak solutions of
{Pu:divF—l—f in Q,

1.12 g . .
(1.12) (AYDju+ A'u+ F*)n; =g on S.

Theorem 1.2. Let Q = Q x (a,b), where Q is a Sobolev extension domain
in R? such that the trace embedding is available; i.e., for any p € [1,d), there
exists a positive constant Ty such that

(1'13) HUHLp(d—l)/(d—p)(agz) < %HUHWZ}(Q)’ Vu € Wpl(Q)

Assume that

D= [[|Al+ Bl +C1"? (o) < oo

M= |Flg, . @ T 1fllz,.@ tdlz, . < oo

po>d, qo> 2,
p1 > da qQ > 27 9
d and + <1,
p2 > 5, go > 1, Pmin Gmin
p3 > d— 1) qs > 23
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where we use the notation

. d .
Pmin = min (po,m, 2p2, %) and  gmin = min (4o, 41,242, q3) -
Ifu € %,°°(Q) is a weak solution of (1.12), then there exists a constant 0 <
Ry < min (1, Vb — a), depending only on d, X\, &y, To, pi, qi, and D, such that
for any o € Q and 0 < r < Ry, we have

il 2@, ) € Nr~F ull sy + Nr "o " |Fllg,, (o)

d—

_d_2 _d-1_ 2
(1.14) + N | fll g, @+ NPT TH gllg, 80
where QT = QT(:C()v b); ST = ST(Z'O; b)7 and N = N(d7 >\a 605 767pi5 qz)
1.2. Holder continuity of solutions

In this subsection, we state main results concerning the local Holder con-
tinuity up to the boundary for weak solutions of the Neumann problem. For
this, we impose the following assumption that holds for the case when (2 is a
convex domain.

Assumption 1.1 (R). Denote
Ap p(zo) = {z € Qp(x0) : u(z) > k}.
There exists a constant & > 0 such that for any zo € Q, p € (0, R], and

0 < k < I, we have

plt
(I = k)[Aip(zo)| < &
! 192 (20) \ Ak, p(20)| A o (@0)\ A1, p(z0)

Yu € Wi (Q,(x0)).

| Du| dz,

Theorem 1.3. Assume the same hypothesis of Theorem 1.1 holds. Denote
M = |lull (@)

(1.15) )
0<a<fi=mn¢l—-———1—-———2—— — —

Then there exists a constant 0 < Ry < min (1, Vb — a), where
Rl - Rl(da )‘apia qi, Da MD) M? CY),

such that, under Assumption 1.1 (Ry), for any o € Q and 0 < r < Ry, we
have

N (0
(1.16) [Uaga0/2:Q, ja(wob) < o max (1%, [ull 2. (Qr (20.0))) »
reo

where Qo = ao(dv)\5607517pi7Qiaa) € (0,0&] and N = N(da Avgoaglapiaqi) > 0.
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Remark 1.6. We point out that if D = 0, then the constant R; in Theorem 1.3
is independent of M. Moreover, in the case when D = M = 0, the constant
Ry depends only on d, A, and «. Therefore, by applying the estimate (1.16) to

“/HUHXOO(QT@OJ,)), we have

N
(U ag,0/2:Qr 2 (0.0) = o U] 2 (@ (0.0)) -

= oo

Theorem 1.4. Assume the same hypothesis of Theorem 1.2 holds. Denote
M = |Jul| (@) and

d 2 d 2 d 2 d—1 2
0<a<ﬁ::min{1————,1————,2————,1— ——}.
Po qo P1 q1 D2 q2 P3 q3

Then there exists a constant 0 < Ry < min (1, Vb — a), where
R1 = Rl(da )‘apia qi, Da MD) M’ CY),

such that, under Assumption 1.1 (Ry), for any xo € Q and 0 < r < Ry we have
the estimate (1.16).

1.3. Estimates for weak solutions of Dirichlet problem

In this subsection, we coPsider the parabolic equations with Dir}chlet bound-
ary condition. We define 7,"°(Q) = %,"°(Q) N #4°(Q), where #5°(Q) is the
closure of €>°(2 x [a,b]) in the Hilbert space #4"°(Q).

Theorem 1.5. Let Q = Q x (a,b), where Q is a domain in R, Assume that
(1.5) holds. If u € ¥,"°(Q) is a weak solution of

(1.17) Pu=divF + f in Q,

then there exists a constant 0 < Ry < min (1, vb— a), depending only on d, A,
pi» qi, and D, such that for any o € Q and 0 < r < Ry, we have the estimate
(1.6).

Proof. By following the proof of Theorem 1.1, and using [6, Eq. (3.4), p. 75]
instead of Lemma 2.3, it is not hard to see that the conclusion of the theorem
holds. We note that counterparts of Remarks 1.1-1.3 are also valid. (]

Theorem 1.6. Let Q = Q x (a,b), where Q is a Sobolev extension domain
in RY. Assume that (1.5) holds, and recall (1.15). If u € ¥5,%(Q) is a weak
solution of (1.17), then there exists a constant 0 < R; < min (1,\/b—a),
where

Rl = Rl(d; AvpiaqiavaDana)v

such that for any xo € Q and 0 < r < Ry, we have the estimate (1.16) with
ag = ap(d, A, €, pis gi, @) € (0,0 and N = N(d, A, &, pi, ¢i) > 0.
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Proof. We point out that there exists a constant & > 0 such that for any
20 € Q, p € (0,Rp], and 0 < k < [, we have

d+1
p

192 (20) \ Ak,p(z0)[ J 4y, (zo)\Arp(20)
Yu € C2(Q),

(118) (I = F)[App(20)] < & |Du| da,

where
App(z0) = {z € Qp(x0) : u(z) > k}.

Indeed, by setting u = 0 on Q°, and then, applying [6, Eq. (5.5), p. 91], we get
the above inequality. By following the proof of Theorem 1.3, and using (1.18)
instead of Assumption 1.1 (R), it is not hard to see that the conclusion of the
theorem holds. O

2. Proofs of main theorems
2.1. Auxiliary results

In this subsection, we provide some lemmas used to prove the main theorems.
The following two lemmas are taken from [6, pp. 95-96]; see also [3, Lemma
15.1, p. 319).

Lemma 2.1. Let {Y,} be a sequence of nonnegative numbers linked by the
recursive inequalities

Ypi1 <O"KY,IT
for someb>1, K >0, and o > 0. If

Y, < bfl/aszl/o,
then {Y,} — 0 as n — oo.

Lemma 2.2. Let {Y,} and {Z,} be sequences of nonnegative numbers linked
by the system of recursive inequalities

Yos1 S UK (Y, 77+ 2707,
Zny1 SV'K (Y, + Z)),
for someb>1, K >0, 0 >0, and k > 0. If
Y <G and 7 <G,

where

G =min{(2K)"7b" 7, (2K) " Fp kL e=mindo b,
min  (2K) (2K) € =min§ o, ;o

then {Y, + Z,} — 0 as n — oo.

We will use the following embedding.
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Lemma 2.3. Let Q = Q X (a,b), where Q is a Sobolev extension domain in
R? (d > 2). Assume that 1 is a smooth cut-off function in R satisfying
suppn C By(z) x (b —1r%,b+1r?),
where € Q and 0 < r < min (1, Vb — a). If nu belongs to ”//21’0(62), then we

have

(2.1) Il o) < Nl g
where N = N(d, &, p,q). Here, p and q satisfy

2d
p€|:2am:|7 q€[2700] f07’d237

d
(2.2) to=3 where

ESHESH
SR

pE[2,00), q€ (2,00 ford=2.

Proof. Let us fix p and ¢ satisfying (2.2), and denote v = nu and a = 2/q.
Notice from [6, Theorem 2.2, p. 62] that there exists a constant Ny = Ny(d, q)
such that

IEv( )2, ey < Noll D(EV) (- O)I1F, ey 1BV (- )7 Grays  VE € (a,b).
From this together with (1.1) it follows that
(s lli@) < B0 DL, @0y < Nol DE) (DI gt 1 E0 s DI
< No&ollv(, Bl o I0C Ol o
< NwC OllLa) + NIDvC O, @) ¢ Ol o)
where N = N(d, &y, q). Therefore, we obtain that (use r < 1)

WL o <N/7m mqmﬁ+N/nm D120 0 DIIE 2, dt
< N max ol ), o)+ ma o, LQ(Q)/ 1Du( )2, o,

a<t<b a<t<b

and thus, by Cauchy’s inequality, we get (2.1). The lemma is proved. O

2.2. Proof of Theorem 1.1

We prove the theorem by adapting the idea of De Giorgi. Let zo € Q and
0<r<Ryp<min (1 Vb ) where Ry will be chosen later. Forn =1,2,.. .,
we denote
(2.3)

Ty = rer k, =k (2 1_1) , B, ={z e, (x0):ulz,t) > kn},

2 on’ 2n
where k > 0 is a constant to be chosen later. Let us set

vy = (u = kn)+,
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and let 1 = n,, be a smooth cut-off function in R¥*! satisfying
0<n<1, n=1on B, (x) x (b—riﬂ,b—i—riﬂ),

(2.4)
suppn C By, (w0) X (b—r0,b+712),  |nel + [Dnf*> <4732,

By applying n?v,, as a test function to the equation (1.4), we get for all t; € [a, b]
that

1 t1 Iy
§/n2($7t1)vi(z,t1)d$+/ /UQAUDjvnDﬂ;n dx dt
Q a JQ

t1 B
= / / (7777tU721 — AY DjUnQUDmvn) dx dt
a Q
t '
- / / AlU(U2Divn + 2nD;nuy,) da dt
a Q
t1 ]
- / / (B'Divpn*vp + Cunvy) da dt
a Q

t1 tl
— / / (F17]2Divn + F1277Dmvn) dx dt + / v, dz dt.
a JQ a JQ
Then by using (1.2), Cauchy’s inequality, and the properties of 7, we have

max/|77vn|2d:c+/ n*| Dy, |? dx dt
Q Q

a<t<b

gn P .
< N(A)T—Q/b /E vpdzdt+ N(N) Y L,
—r2 " 1

1=

where we set

I :/(|A|2+|B|2+|C|)n%,%dxdt,
Q

b
b= [ [ (4 +(clpe et
(2.5) @ En
I = [ (PP D+ FiriDale) dodr
14:/|f|7721)ndxdt.
Q
Therefore, from the following inequality

/|D(77Un)|2 dx dt < 2/ 772|Dvn|2dxdt+2/|Dn|2vZ dx dt,
Q Q Q

we obtain

gn b !
(2'6) HnUnH?;/;wU(Q)JrHannH?fﬂQ) < N(A)T_Q/b ) /E '0121 dx dt+N(/\) le’-
-2 JE, 7

1=
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Hereafter in the proof, we fix p € (d, pmin) and ¢ € (2, ¢min) satisfying

d 2 d 2
0<di=1—--—-<1-— — .
p q Pmin Gmin
Estimate of 1. To estimate I, we first note that Holder’s inequality implies
(2.7) L <Dmoaly, o)
where
2 2
Xi=—22 and G =
Po — 2 qo—2

We also note that

2
X1 € (Q’d—dg)’ ¢ € (2,00) for d >3,

X1 € (2700)7 Cl € (2500) for d = 25

and
L2y (i+3) >4
x1 G 2 Po o 2
Therefore, by choosing (2 € ({1, 00) such that
i 2 d
RN

and then, applying Holder’s inequality and Lemma 2.3 to (2.7), we get

1 < (@& E) D22

X1,¢2

©@x(b—r2 b)) < N2 D?[|nv, ||?,,21,0(Q),

where N = N(d, &y, po,q0) > 0 and

Estimate of Is. By using Holder’s inequality, we obtain

q—2

b oy q
B < 48141+ 1014, g, (/b_ Bl 7 dt)

q—2

b q
2_0§—2d__ 4 2 p=2_gq
< Nk*r o w0 ||A+IC1 2]y, o (/b Bl dt) ,
—r2

q—2

q

b
< N2 p? ( / B, |7 a2 dt) ,
b—r2

where N = N(d, po, p).
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Estimate of Is. By Cauchy’s inequality and the properties of 7, we get for any
e > 0 that
(2.8)

4n b b
I3 §e/ 7]2|Dvn|2d:cdt+—2/ /vidxdtnLN(e)/ / |F|? da dt.
Q ™ Jb—rz JO b—r2 JE,

From Hélder’s inequality it follows that

’ 2 2 ’ r=2_4 =
|| prasa <P, o ([ 1155
b—r2 JE, b—r2
a—2
2-25—2d_ 4 2 b p—2 _a_ !
(29) SNT r1 491 ||F||$p1,q1(QT) /b 2|En| p a-2 dt B

where N = N(d, p1,p). Therefore by combining (2.8) and (2.9), we have

qn
I3 Se/ 772|Dvn|2dzdt+—2/ /vidzdt
Q ™ Jo—r2 JO

_9§_2d 4 b P—2 q_ o
+NT2 28 p1 41 HFH?%pl,ql(Qr) </b 2|E‘n|1’p q32 dt ,

where N = N(d, p1,p,¢€).
Estimate of I,. To estimate Iy, let us set
_ 2dq _ 2q __Xo
— a_. . 1. 1 gO - T a Xl - )
2q+dq—4 q+2 xo—1
We then find that

X0 € (1,min (22)) Co € (1,min (32))

d 2 d

— 4+ ===,
X1 G 2
By Hoélder’s inequality, Cauchy’s inequality, and Lemma 2.3, we obtain for
e > 0 that

X0 G =

and

I < Inonllzy, o, @1 L2y o (Bnx (b—r2 b))
(2.10) < ellmonlSoig) + Nflz, oo Boxprz n)

where N = N(d, &y, p, q,€). Notice from Holder’s inequality that (use |E,| <
N(d)r?)

2
I co (B (0—r2 )
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2(a—2¢0)
q—2

2 b p=2x0 _aSo %o
S Hfop/z,q/z(Qr) /b_T2 |En| pxo a-260 (t

2 b pP=2_4q_ 28 _4q_ o
— Hfopm,qm(QT) - |En| 7 2 |E,|d 72 dt

b q
4-25—-2d_ 4 P2 _q_
(211) < Nr P2 42 Hf”_? po.as (Qr) (/b ) |En P q—2 dt) s

where N = N(d, p2,p, q). Therefore, we get from (2.10) and (2.11) that

q—2

q—2

b q
4-25— 24 p=2_a_
Iy < 6”77’1)””421/21,0(@) + Nr 20— 30—y Hfo sz (@) </b . |En| P a2 dt) ,
—r2

where N = N(d, &y, p2,p, ¢, €).
We are now ready to prove the theorem. By (2.6) and the estimates of I,
we have

1/2
on b
|l < No— 2 dxdt
Imenllpoiq) < No </b /En”” ‘ )

+ N1T“D||77vn|\7/1,o(Q) + Nokr"rDE,, + N3r ° Mo E,,
where
NOZNO(A)v N1:N1(d,50,A,p0,q0)21,
N2:N2(d;A7p07p)a N3:N3(d;60;A7p15p27p5q)'

Here, we use the notation

1—d 9_d _ 2
Mo =150 | Fllg,, @0+ 7 2 | £l @0
Then by taking Ry € (0,1] so that

1 1
2.12 R'D<< — < =
(2.12) = =9oN, — 2
we obtain for 0 < r < Ry < Ry that
(2.13)

1/2
2n [
ann||“t/21’U(Q) < 2]\707 (/ / ’Uidl‘dt) +(2N2+2N3)T76(kT“D+M0)E
b—r2
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Next, denote

b p=2 2q_ =
2p p -2
Y, = / (/ [Dnon |72 d:c) dt ,
b—r2 E,

and observe that

pP—=2 _2q 2q

b 2p q—2
. k
(2.14) Y, > / / vn|722 daz dt > Fo.
bfri+1 En+1 277/

Since p and ¢ satisfy
p—2 q—2 d
£Z = 2L _Z2) ==
d<2p>+ <2fZ> 2 o

2p 2 2q 2
=—— |14 = —— 1+ =
X p2( +d6) and ¢ q2( +d5)

the constants

satisty

Therefore, by using Hélder’s inequality and Lemma 2.3, we have

20 _25
Yoo < mmvnll 2, c@xo—r2 ) B < Nallnmvnllypog)En'™,
where Ny = Ny(d, &, p, q), and thus, we get from (2.13) that

1/2
on b _26
(2.15) Y,, < Nj (— (/ / v da dt) +r—5(kRgD+MO)En> E;,
r b—r2 JE,

where N5 = N5(d, &, \, pi, ¢;). In particular, if n = 1, then by using the fact
that

El < N(d,p)T@,
we get
)
(2.16) Vi < No (17 ul 2y, + (BRED + Mo)r ™5 ),

where Ng = Ng(d, £y, A, pi,qi) > 1. Notice from Holder’s inequality and (2.14)
that (use v, > vpt1)

b 1/2
/ / vfwl dz dt
b*’l“i+1 En+1
b 2 2p q—2
<N [ ([ el dt
bfri+1 En+1

(2.17) < N(d, p)r'~°Y,,.
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Therefore, by using (2.14), (2.15), and (2.17), we obtain that

25
on (on\ T Mo 1+ 7255
n a+25
Y1 §N7T—5 (?) (1+ROD+ T) Y, %,

where N7 = N7(d, €y, A\, pi,q;) > 1. Since R{D < 1 (see (2.12)), we have

25
Y, <47 NZS (2 + &) Yn” TS 4nKY1+#526,
rokdrzs k

where we set

N 2
K = 2 and k= 2No (387 ACE) (17 ull ) + Mo ) 2 Mo,
0 dt2s
We choose Ry € (0, Ry] such that
RAD < —— 4~ ()" (3v;)~ 4522,

= 9N,
Then for r € (0, Ry], we obtain by (2.16) that

d+25 d+25

v, < 4 (52) -5

Therefore by Lemma 2.1, we have Y,, — 0 as n — oo, and thus, we get
u <2k on Q.

By applying the same argument to —u, we obtain the estimate (1.6) from the
definition of Mgy and k.

2.3. Proof of Theorem 1.2

We follow the proof of Theorem 1.1 with a few adjustments. By the same
argument used in deriving (2.6), we obtain

4n b >
annll?,,;,o(@ + 1nDvallg gy < N(A)T—Q/b [E vadrdt+ N> T,
—r2 - 1

1=

where we use the notation (2.3)—(2.5) and

I :/|g|7721)n do dt.
S

Let us fix p € (d, pmin) and q € (2, gmin) so that

0<5::1—é72<1— d 2 .
p q Pmin Gmin
We write p
P3
X=Jpp—ar1 = ?
and observe that
P P3 (d—1)x

< , =
X p—1 p3—1 d—x
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Then, by using Holder’s inequality and (1.13), we have

(218)  Is < Invnll2,, ) s—1).0s s as— 1y 19N 24 05 (50) < ToH gl 2,05 (50
where

H = ||77,U77’H$Xw<13/(<13*1)(Q) + HD(TI’UWI)foqu/(qs,l)(Q)‘
Notice from Holder’s inequality that

(2.19)
1—s—4=1_ 2
H<Nr v (”m}””fp/w—lm/mfn(Q) T HD(U%)||,sf’p/(,,,1),q/(q,1)(Q))
a1

< NPT T (.0 gy B
where N = N(d, ps,p) and

q—2

b 2q
r—2 _2q
E, = / |E, |27 a2 dt .
b—r2

By combining (2.18) and (2.19), and then, applying Cauchy’s inequality, we
obtain for € > 0 that
2(d—-1) 4

Is < 6”7’]’1}””3/21,0(62) NPT g2 2

P3,43 (ST)E'”’

where N = N(d, To, ps, p,€). Then by following the same steps as in the proof
of Theorem 1.1, there exists a constant Ry € (0, 1] so that for 0 < r < Ry < Ry,
we have (see (2.13))

1/2
on ([P _
HnUnH"V;’O(Q) = N? (/bﬂ /E 0721 dx dt) +Nr J(kr'up +Mo)E,,

where =1 —d/po —2/qo and

_d _ _d _ 2

1 2 2 7
Mo=r"1"5|Fllg, @)+ 72 = fleg, @
_d=1_ 2
+riT T T lgllg, (50

This implies the estimate (1.14) in the same way as (2.13) implies (1.6). The
theorem is proved.

2.4. Proof of Theorem 1.3

To prove the Holder continuity of u, we need to obtain the oscillation es-
timates. For this, we use the following four lemmas whose proofs will be
given in Appendix. Hereafter in the proof, we let (y,s) € Qg, /2(z0,b), where
Ry € (0, Rg] will be chosen later. We use the notations

Q,=Q,(y), Q) =9,x(s—7p%5),
Epp(t) ={z € Q, :u(x,t) > k},

d 2
P € (d,pmin), ¢ € (2,¢min), 6=1— b g € (0,1).
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We also denote by Ry the constant in Theorem 1.1.
Lemma 2.4. There exist constants 7, co € (0,1) and Ry € (0, Ry, where
Y= ’Y(da Av 50;pia q’b)a

co = co(d, N\, €0, piy 4i)
Rl = Rl(da)\;gOapiaqiaDaMDaMaaaﬁ)a

such that for any p € (0, R1/2], the following holds: If

(2.20) |Ep(s —vp°)| < %lﬂpl

and

(2.21) H = ess@szup u—Fk>p®

for some k € (—oo, M|, then we have

(2.22) |Ek+%H7p(t)‘ < colQ,l, VYt [s—yp% sl

Proof. See Section 3.1. O

In the rest of the proof, v and R; denote the constants in Lemma 2.4.

Lemma 2.5. There exist constants ¢1 € (0,1], depending only on d, \, &, pi,
and q;, such that for any p € (0, R1/2], the following holds: If

(2.23) [{(z,t) € Q) s u(x,t) > k}| < c1p?t?
and
(2.24) H :=esssup u—k > p”

Q7
for some k € (—oo, M|, then we have

1
(2.25) esssup u < k + EH
o2

Proof. See Section 3.2. O

Lemma 2.6. Under Assumption 1.1 (R1/2), there exists a positive integer
co > 2, depending only on d, X\, p;, qi, &, and &, such that for any p €
(0, R1/2], we have either

w < 2%p%,
or
(2.26) H(m,t)EQ3/2:u(x,t)>\If—2%H < (g)dﬂ
or
(2.27) H(m,t)eQZ/Q:u(x,t)<1/J—|—2%HScl (g)m,
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where ¢y is the constant in Lemma 2.5. Here, we denote

U =esssupu, ¢ =essinfu, w=oscu=W —1.
Q Q) Q3

Proof. See Section 3.3. O

As a consequence of Lemmas 2.5 and 2.6, we get:

Lemma 2.7. Under Assumption 1.1 (Ry1/2), for any p € (0, R1/2], we have
either

osc u < 20211 e
SC U S
p/4

or

1
2.28 osc u < |1 ———|oscu,
22 s < 202“) Q;

where co is the constant in Lemma 2.6.

Proof. See Section 3.3. O

Let 0 < r < R1/2, and choose ag € (0, ] such that

N 1
40<1W>§1’

where ¢, is the constant in Lemma 2.6. For £ =0,1,2,..., we define
re=4"%r, wp = oscu, Yp = gkeoy,,
Tk

Then by Lemma 2.7, we obtain for £k =1,2,..., that
1
yp < 480 max <262+17“g, (1 — W) wk_1> < max (252“7“0‘,%_1) ,

and thus, by using yo = wp, we have
yr < Ny := max (202+1ra,w0) .

Therefore, we conclude that
Tk

(2.29) wi < Npd~ke0 < N, (—) ’
T

Assume that p € (0,7] and r, < p < rg_; for some positive integer k. Then we
get from (2.29) that

_ aq [e70]
osc u<wi_1 <Ny (Tk 1) = Ny4*° (/—))
Q3 (y,s) r r

@Q
(2.30) =N (f) max (%, [[ull 2. (@, .9))

for any (y,s) € Qr, 2(w0,b) and 0 < p <r < Ry /2, where N = N(c2).
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Now we are ready to prove the theorem. Let us fix r € (0, Ry], and let
(ya S)a (Z; T) S QT/Q(ZCQ, b) satisfy

(:8) # (2,7), = max |y — 2|, s — 7'/ < /2.
Then by (2.30), we have

uy, ) —ulzn)| 1 ose u
ly — z[@0 4 [s — 7]@0/2 = (7p)* Q,,(v.9)
N(027’y)

reo

IN

max (7, [[u]l 2. @, (zo.b))) -

Therefore, by using a standard covering argument, we get the estimate (1.16).
The theorem is proved.

3. Appendix
3.1. Proof of Lemma 2.4

Let v € (0,1) and Ry € (0, Ry] be constants to be chosen later. Fix p €
(0, R1/2]. For k € (—o0, M] satisfying (2.20) and (2.21), we define

v = (u—k)4+.
Let = n(x) be a smooth cut-off function in R? such that
0<n<1, n=1on Ba_o,y), suppnC By(y), [Dnl<4(ep)™",

where 0 < € < 1. Then by following the same argument used in deriving (2.13),
there exists a constant R} € (0, Ry|, depending only on d, A, &, p;, ¢;, and D,
such that for p € (0, R} /2], we have

(3.1) max vi da
s—yp2<t<s Er(1—o)p

/ / vi da dt
€p s—yp? JEyg,,

—|— — v dx + Np**~2(MD + M)’ E?,
9 Ep,p(s=7p?)

where N = N(d7 >\; 607p’i7 Qz) and

s p—2 2q_ (12;2
E=([ BT
s—yp?

Notice from (2.20) that

1 N
/ / o2 da dt + 2 v d < (—27+§> 2|0, .
(€0)? Js—rp2 /B, 9 J By, (s—vp?) € 9

We also note that (1.9) implies
B> < (1) T |0,"% < Ny'T 5210,
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By the above two inequalities, we get from (3.1) that
(3.2)

N 5 q=2
max / vidr < (E—J + _) H?|Q,| + Np*(MD + M)*y 7 |Q,|.
B i-opp

s—yp?2<t<s 9

We note that for t € [s — yp?, s], we have

16 2
Biramaan®l < g | on(a, 0 do

k+%H,(175)p(t)
16 / )
< —= |vg (z,)|* da.
9H? B (1—e)p(t)

From this together with (2.21) and (3.2), it follows that

16 N’y 5 —a q=2
‘Ek-i-%Ha(l—ﬁ)p(t)’ < 9 (6_2 + 9 +NP2(ﬁ )(MD+M)2’Y 4 ) |Qp|-

Then by taking Ry € (0, R}] so that
(3.3) R (MD + M)* <1,

we have

16 [Ny 5 o2
’Ek-i-%H,(l—e)p(t)‘ < r (6—2 *t3 + Ny a ) €]

Therefore we obtain by (1.9) that
|Ek+gH,p(t)| < ‘EkJr%H,(lfe)p(t” + By (y) \ Ba—o)p()] < ol

where
16 (Ny 5 =2 d
Co = ? (6—2+§+N’7 a ) +N0(d,9)(1—(1—6) )
Then by taking e = €(d, 0) sufficiently small, and then v = v(IV, ¢, €) sufficiently
small, we have 0 < ¢p < 1, which implies (2.22).

3.2. Proof of Lemma 2.5

Let us fix 0 < p < R1/2, and let ¢; € (0,1] be a constant to be chosen later.
Assume k € (—oo, M] satisfies (2.23) and (2.24). For n = 1,2, ..., we denote

PP H 1
n=5tom kn=k4+—(2- » En(t) = E t).
pn=5+ o +5 ( 2n_1> (t) = Bk, p,. (1)

Let us set
vp = (u — kn)+,
and let 7 = 7,, be a smooth cut-off function in R4 satisfying
0<n<1, n=1on By, (y) % (5= 70n1: 8 +70s1);
suppn C By, (y) X (s —vpn, s +vp5),  |nel + |Dnf* < N,4"p~2,
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where N, is a constant depending only on 7. Then by following the same
argument used in deriving (2.13), we find that (use v < 1)

1/2
2" 5
B4) llmenllygog < N=> ( / / vidzdt> +Np? = (MD+M)E,,
s=yp3 J En

where N = N(d, \, &, pi, q;) and

q—2

s p—2 2q 20
E, = / \E, |7 72 dt :
s—yp2

Let us fix k = k(d, p) > 0 so that
2 2 2
2 2
p—2 p—2 d—2
and choose p € (d,p) and ¢ € (2, q) satisfying

2p 2 2q 2
L1k and =L = (14 k)L
p—2 p—2 qg—2

Then it follows from (3.4) that
(3.5) I7onlly10qy) < N2"pY2HY,, + NpPT4/2(MD + M)Z:t",

1/2
Y, 1 / / (””)2 da dt
n = T d+2 T X )
pd% s—yp2 JE, H

g—2
1 P2 24
2= gy | [ B T
pTHRA2 s=p

Now, we claim that

<(1+k)

where

2q

2
A+
where N = N(d, \, &, pi, ;). From (2.23), it is not hard to see that the first
inequality in (3.6) holds. By using Holder’s inequality and the fact that

S 1 S
[ it s [ [ uPdear<arepey
s |kn+1 - knl s=yp2 1y J Enta

2
—YPhi1

(3.6)  Yi<a? and Ve < NAY(Y,HO 4+ 20V o

we have

YnJrl

1 5 w2 s 2(d+2) )
<s— ([ Bwla) ([ [ e
Hp2 57'Vpi+1 57'Vpi+1 Ent1

< gri2y i

de/Q HnnU"”gzgdsz) (Q3)>
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and thus, we get from Lemma 2.3, (3.5), and (2.24) that

1
de/g HnnvnH“f/zl’o(Q;’)

L s MD+ M
QpﬁT

2

Yo < N2nH2y,7
< Navy, TTE N Y, i Z1+e

< N4y, TR L N9 B (MD + MY, T 21

This together with (3.3), we get the second inequality in (3.6).
Next, we claim that

(3.7) Zy < N(C};p2 + 0:2;‘72)1%‘ and  Z,41 < N4 (Y, + Z "),

where N = N(d, \, &, pi, ¢;). Note that since

p— 2 qg—2 1 d d
- — +2q = = —465) > =,
2p 2q 1+r\2 2

we get from Lemma 2.3 that

1
Z, < v o o it
S R, gy e @)

n+1
< NW”nnvnH“y;’o(Q;’)'

Then by using this together with (3.5), we have
Zni1 < NA™Y, + N2"pP~*(MD + M)Z)*,

which gives the second inequality in (3.7). Assume that p > ¢. Then we obtain
by (2.23) that

g—2 q—2 1

N s 62;62 a=2 a—2
< ———— |Eq| dt < Ne¢ = N(¢™ )™,
plt %7 \Jomrp?

where N = N(d, p;, ¢;). On the other hand, if p < g, then by Holder’s inequality
and (2.23), we get

1 s ﬁ;ﬁZ 152*.2 p272 . 1
[ — P K
Z1 S (dT)ﬁ;.z (/ 2|E‘1| dt) S & = (Cl ) .
P 4 s=p

By combining the above two inequalities, we get (3.7).

Finally, by taking ¢1 = c¢1(d, A, o, pi, gi) sufficiently small, and then, by
using Lemma 2.2, (3.6), and (3.7), we have Y;, — 0 as n — oo, which implies
(2.25).



LOCAL ESTIMATES 1145

3.3. Proof of Lemma 2.6

Assume that w > 292p® where co > 2 is a positive integer to be chosen later.
Obviously, we have at least one of the inequalities

2
P 1
(3.5 Busg (5= 2 )| < 5l
or
2
P 1
(3.9) ’Qp/2\E\I/—§,§ (S—T)’ < §|Qp/2|'

Now, we claim that (3.8) implies (2.26). To see this, we only need to consider
the case that
w
essvsupu > U — 20
r/2
Let us fix ¢ in {1,2,...,¢2 — 1}. Notice from the above inequality that
— (p_Y\>s¥_ Y LY e
H = esswsupu (\IJ 21.) > i 20 > 9¢2 > p.

p/2

We also note that (3.8) yields

2
P 1
v (o= 7)< 00l

Then by Lemma 2.4, we have

vp?
4 b

QP/Q\E‘I/fﬁJr%H,g(t)’ > (1—co)yp2|, Vte [s——,s
where ¢ is the constant in Lemma 2.4. Since H < w/2i, we have
3 w

w
V- —+-HS<VUV - —.
21+4 - 21+2

Therefore, we obtain

2
(3.10) Qo \ By o o) > (1= co)|Ql, Vte [sﬂ,s].

2i+2°72 4

Let us set
w w

k:@_ﬁ, l:q]—ﬁ, B(t):Ekﬁp/Q(f)\Elﬁp/Q(t)
Then by Assumption 1.1 (R1/2), (3.10), and (1.9), we obtain for ¢ € {s - 1;&, s]
that

pd+1
19,/2\ Ekpr2(t)] Jpe)

w
— | E ()] <& |Du| dx < Np/ |Dul dz,
21+3‘ )2 ‘ B(t)
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where N = N(cg, &1,0) = N(d, \, &0, E1,piy qi). Therefore, by integrating the

above inequality over [s — 1;&, s}, and then, using Holder’s inequality, we get
w
(3.11) 5;5\{(nt)e<9;2:u¢at)>z}]

< Np/ /|Du|dmdt
s—yp*/4J B

s 1/2 s 1/2
;ng(/ / |DM%&dQ </‘ |Md0 .
s=yp?/4JEy p/2 s—yp?/4

We remark that by following the same argument used in deriving (2.13), we
have

N _
I = Bl ) € 2= B)+lup) + No®(MD + M)E,

where )

s p—2 2q_ qu
B=([ BT
s—p?

Then it is easy to see that (use (3.3))

s 2
/ / |Dul? dx dt < Nw—ipd+N(MD+M)2pd”ﬁ

s=vp2/4 JEy 5/2 4
w2

A2 < N—
(3.12) <NZ

pd 4 N pt2e,

From (3.11) and (3.12), it follows that

H(z,t) € QZ/Q cu(z,t) > l}‘2 <N (1 + %ph) pd+2/ \B|dt,
s—vyp?/4
and thus, by using the fact that
41' Ser 41'
EP < e <1,
we conclude

w 2
H@@eggfm%w>m—§ﬁ‘gNw”/ \B|dt,

s—vyp?/4
where N = N(d, A, &, €1, pi, ¢;). We sum the above inequalities over ¢ to obtain

S

w 2
(@fUH@ﬁth:MLU>W7?ﬁ’SNM”/ 1, dt

s—yp2/4
-y ( £)2d+4.
- 2
By taking ¢y > 2 so that 52%1 < ¢1, we find that (2.26) holds. Moreover, by
applying the same argument to —u, it is not hard to see that (3.9) implies
(2.27). The lemma is proved.
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3.4. Proof of Lemma 2.7

Suppose that
osc u > g2l por
p/4
We then have
(3.13) w =oscu > ezt par > gc2 por
Q
and thus, by Lemma 2.6, we get either (2.26) or (2.27). Assume the inequality
(2.26) holds. We denote
w
H:= ~(v-2).
essws/upu 5o
p/2

If H > p®, then we obtain by Lemma 2.5 that

w 1 w w w
esswsupu <V - 5o + §H <v-— 50 + Py <V - 9catl”
p/4

From this, we get

. w 1
3§cu§\lf—estwlnfu—2CZT§ (1—W)W-

p/4 p/4
On the other hand, if H < p®, then we obtain by (3.13) that
w o w
esswsupugklf—ﬁ—i-p S\I/—W,

r/2

and thus, we have

. w 1
osc u < W —essinfu— Seatl <|1- Seat1 ) W
Qp/2 Qp/2

By applying the same argument to —u, it is not hard to see that (2.27) implies
(2.28). The lemma is proved.
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