• 제목/요약/키워드: Neumann Condition

Search Result 89, Processing Time 0.023 seconds

Axi-symmetric eddy currents analysis by FEM (유도가열 시스템에서 축대칭도전체의 와전류 유한요소 해석)

  • Choi, K.H.;Ahn, C.H.;Kim, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.119-121
    • /
    • 1994
  • In solving axisymmetric field problem by FEM, absorbing boundary condition is introduced to approximate the normal derivatives on artificial boundary to truncate the finite analysis legion. To verify this scheme eddy currents of an conducting sphere in an uniform magnetic field are calculated, and it shows better results than one with Neumann boundary condition. Also eddy currents of conducting cylinder surrounded by coils are calculated, which is typical model in induction heating system.

  • PDF

Weak F I-extending Modules with ACC or DCC on Essential Submodules

  • Tercan, Adnan;Yasar, Ramazan
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.239-248
    • /
    • 2021
  • In this paper we study modules with the W F I+-extending property. We prove that if M satisfies the W F I+-extending, pseudo duo properties and M/(Soc M) has finite uniform dimension then M decompose into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if M satisfies the W F I+-extending, pseudo duo properties and ascending chain (respectively, descending chain) condition on essential submodules then M = M1 ⊕ M2 for some semisimple submodule M1 and Noetherian (respectively, Artinian) submodule M2. Moreover, we show that if M is a W F I-extending module with pseudo duo, C2 and essential socle then the quotient ring of its endomorphism ring with Jacobson radical is a (von Neumann) regular ring. We provide several examples which illustrate our results.

The Study of Finite Element Method for Analyses of Travelling Magnetic Field Problem (운동자계 문제의 해석을 위한 유한요소법에 관한 연구)

  • Chang Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.108-116
    • /
    • 2005
  • This paper presents finite element analyses solution in the travelling magnetic field problem. The travelling magnetic field problem is subject to convective-diffusion equation. Therefore, the solution derived from Galerkin-FEM with linear interpolation function may oscillate between the adjacent nodes. A simple model with Dirichlet, Neumann and Periodic boundary condition respectively, have been analyzed to investigate stabilities of solutions. It is concluded that the solution of Galerkin-FEM may oscillate according to boundary condition and element type, but that of Upwind-FFM is stable regardless boundary condition.

Nonlinear Flow Characteristics of Two-Dimensional Hydrofoils moving below the Free surface (자유수면하에서 이동하는 2차원 수중익 주위의 비선형 유동특성)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.8-19
    • /
    • 1998
  • Nonlinear flow characteristics of a hydrofoil running under the free surface are investigated based on potential flow theory using singularity distribution techniques. Following Hess & Smith's method[12], sources and vortices are distributed on the surface of the foil and Rankine sources are distributed at a distance above the undisturbed free surface to solve the nonlinear free surface waves(so called Raised Panel Method). Using the linearized Neumann-Kelvin solution, the conversed solutions which rigidly satisfy the nonlinear free surface condition is obtained through an iterative technique. It is validated that the nonlinear solutions are compared with Duncan's experimental results(NACA 0012, $\alpha=5^{\circ}$), showing good correlations with each other. At a very shallow submergence and a very high speed the converged solutions are obtained. As the speed increases higher, it is shown that the difference between the nonlinear and linear solutions are trivial. Finally, the effects of the camber and thickness on the nonlinear flow characteristics of the foil are investigated.

  • PDF

HORIZON EXPANSION OF THERMAL-HYDRAULIC ACTIVITIES INTO HTGR SAFETY ANALYSIS INCLUDING GAS-TURBINE CYCLE AND HYDROGEN PLANT

  • No, Hee-Cheon;Yoon, Ho-Joon;Kim, Seung-Jun;Lee, Byeng-Jin;Kim, Ji-Hwang;Kim, Hyeun-Min;Lim, Hong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.875-884
    • /
    • 2009
  • We present three nuclear/hydrogen-related R&D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the throughflow calculation with a Newton-Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data.

Diffraction of electromagnetic waves by a dielectric wedge of the angle larger than $180^{\circ}$ ($180^{\circ}$ 이상의 쇄기각을 갖는 쇄기형 유전체에 의한 전자파의 회절)

  • Kim, Se-Yun;Na, Jeong-Ung;Sin, Sang-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1986.07a
    • /
    • pp.591-594
    • /
    • 1986
  • An asymptotic solution of electro-magnetic waves diffracted by a dielectric wedge of the angle larger than $180^{\circ}$ is obtained in case of the incidence of a E-polarized plane wave. Based on the dual integral equation in the spectral domain, physical optics approximation is supplemented by correction currents distributed along the interfaces. Those currents are expanded in a series of Bessel functions, known as Neumann's expansion of which fractional order is chosen to satisfy the static edge condition as the limiting value of dynamic case. Numerical results of edge diffraction patterns and field patterns are presented for some typical cases.

  • PDF

I-SEMIREGULAR RINGS

  • Han, Juncheol;Sim, Hyo-Seob
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.337-347
    • /
    • 2020
  • Let R be a ring with unity, and let I be an ideal of R. Then R is called I-semiregular if for every a ∈ R there exists b ∈ R such that ab is an idempotent of R and a - aba ∈ I. In this paper, basic properties of I-semiregularity are investigated, and some equivalent conditions to the primitivity of e are observed for an idempotent e of an I-semiregular ring R such that I∩eR = (0). For an abelian regular ring R with the ascending chain condition on annihilators of idempotents of R, it is shown that R is isomorphic to a direct product of a finite number of division rings, as a consequence of the observations.

Properties of integral operators in complex variable boundary integral equation in plane elasticity

  • Chen, Y.Z.;Wang, Z.X.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.495-519
    • /
    • 2013
  • This paper investigates properties of integral operators in complex variable boundary integral equation in plane elasticity, which is derived from the Somigliana identity in the complex variable form. The generalized Sokhotski-Plemelj's formulae are used to obtain the BIE in complex variable. The properties of some integral operators in the interior problem are studied in detail. The Neumann and Dirichlet problems are analyzed. The prior condition for solution is studied. The solvability of the formulated problems is addressed. Similar analysis is carried out for the exterior problem. It is found that the properties of some integral operators in the exterior boundary value problem (BVP) are quite different from their counterparts in the interior BVP.

SOLUTION TO ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS IN WEAKLY q-CONVEX DOMAINS

  • Saber, Sayed
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.409-421
    • /
    • 2018
  • Let X be a complex manifold of dimension n $n{\geqslant}2$ and let ${\Omega}{\Subset}X$ be a weakly q-convex domain with smooth boundary. Assume that E is a holomorphic line bundle over X and $E^{{\otimes}m}$ is the m-times tensor product of E for positive integer m. If there exists a strongly plurisubharmonic function on a neighborhood of $b{\Omega}$, then we solve the ${\bar{\partial}}$-problem with support condition in ${\Omega}$ for forms of type (r, s), $s{\geqslant}q$ with values in $E^{{\otimes}m}$. Moreover, the solvability of the ${\bar{\partial}}_b$-problem on boundaries of weakly q-convex domains with smooth boundary in $K{\ddot{a}}hler$ manifolds are given. Furthermore, we shall establish an extension theorem for the ${\bar{\partial}}_b$-closed forms.

Improved HPC method for nonlinear wave tank

  • Zhu, Wenbo;Greco, Marilena;Shao, Yanlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.598-612
    • /
    • 2017
  • The recently developed Harmonic Polynomial Cell (HPC) method has been proved to be a promising choice for solving potential-flow Boundary Value Problem (BVP). In this paper, a flux method is proposed to consistently deal with the Neumann boundary condition of the original HPC method and enhance the accuracy. Moreover, fixed mesh algorithm with free surface immersed is developed to improve the computational efficiency. Finally, a two dimensional (2D) multi-block strategy coupling boundary-fitted mesh and fixed mesh is proposed. It limits the computational costs and preserves the accuracy. A fully nonlinear 2D numerical wave tank is developed using the improved HPC method as a verification.