DOI QR코드

DOI QR Code

Improved HPC method for nonlinear wave tank

  • Zhu, Wenbo (Marine Design and Research Institute of China) ;
  • Greco, Marilena (Centre for Autonomous Marine Operations and Systems (AMOS), Dept. of Marine Technology, NTNU) ;
  • Shao, Yanlin (Department of Mechanical Engineering, Technical University of Denmark)
  • Received : 2016.10.07
  • Accepted : 2017.03.09
  • Published : 2017.11.30

Abstract

The recently developed Harmonic Polynomial Cell (HPC) method has been proved to be a promising choice for solving potential-flow Boundary Value Problem (BVP). In this paper, a flux method is proposed to consistently deal with the Neumann boundary condition of the original HPC method and enhance the accuracy. Moreover, fixed mesh algorithm with free surface immersed is developed to improve the computational efficiency. Finally, a two dimensional (2D) multi-block strategy coupling boundary-fitted mesh and fixed mesh is proposed. It limits the computational costs and preserves the accuracy. A fully nonlinear 2D numerical wave tank is developed using the improved HPC method as a verification.

Keywords

References

  1. Atkinson, K., Han, W., 2009. Theoretical Numerical Analysis: a Functional Analysis Framework. Springer Science and Business Media.
  2. Boussinesq, J., 1871. Thorie de lintumescence liquide appele onde solitaire ou de translation, se propageant dans un canal rectangulaire. In: Comptes rendus hebdomadaires des sances de l'Acadmie des Sciences, p. 755.
  3. Cai, X., 2003. Overlapping domain decomposition methods. In: Advanced Topics in Computational Partial Differential Equations. Springer, pp. 57-95.
  4. Colicchio, G., Greco, M., Faltinsen, O., 2006. A bem-level set domaindecomposition strategy for non-linear and fragmented interfacial flows. Int. J. Numer. Methods Eng. 67, 1385-1419. https://doi.org/10.1002/nme.1680
  5. Colicchio, G., Greco, M., Lugni, C., Faltinsen, O.M., 2010. Towards a fully 3d domain-decomposition strategy for water-on-deck phenomena. J. Hydrodyn. Ser. B 22, 462-467. https://doi.org/10.1016/S1001-6058(09)60237-7
  6. Fenton, J., 1972. A ninth-order solution for the solitary wave. J. Fluid Mech. 53, 257-271. https://doi.org/10.1017/S002211207200014X
  7. Goring, D.G., 1978. Tsunamisethe Propagation of Long Waves onto a Shelf (Ph.D. thesis). California Institute of Technology.
  8. Grimshaw, R., 1971. The solitary wave in water of variable depth. Part 2. J. Fluid Mech. 46, 611-622. https://doi.org/10.1017/S0022112071000739
  9. Hanssen, F.-C., Bardazzi, A., Lugni, C., Greco, M., Faltinsen, O., Free-surface tracking with the harmonic polynomial cell method, under review on Int. J. for Numerical Methods in Engineering, 2017
  10. Intel, R., 2012. Intel Math Kernel Library Reference Manual. Technical Report, Tech. Rep. 630813-051US [Online]. Available: http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/mklman.pdf, 2011.
  11. Kim, C., Clement, A., Tanizawa, K., et al., 1999. Recent research and development of numerical wave tanks-a review. Int. J. Offshore Polar Eng. 9.
  12. Liang, H., Faltinsen, O.M., Shao, Y.L., 2015. Application of a 2d harmonic polynomial cell (hpc) method to singular flows and lifting problems. Appl. Ocean Res. 53, 75-90. https://doi.org/10.1016/j.apor.2015.07.011
  13. Ma, S., Hanssen, F.-C., Siddiqui, A., Greco, M., Faltinsen, O. Local and global properties of the harmonic polynomial cell method: in-depth analysis in two dimensions,under review on Int. J. for Numerical Methods in Engineering, 2017.
  14. Mo, W., 2010. Numerical Investigation of Solitary Wave Interaction with Group of Cylinders (Ph.D. thesis). Cornell University.
  15. Ogilvie, T.F., 1967. Nonlinear high-froude-number free-surface problems. J. Eng. Math. 1, 215-235. https://doi.org/10.1007/BF01540946
  16. Quarteroni, A., Valli, A., 1999. Domain Decomposition Methods for Partial Differential Equations. Oxford University Press.
  17. Shao, Y.-L., Faltinsen, O.M., 2012. Towards efficient fully-nonlinear potentialflow solvers in marine hydrodynamics. In: Proceedings of the 31st International Conference on Ocean, Offshore and Arctic Engineering(OMAE), Rio de Janeiro, Brazil, pp. 369-380.
  18. Shao, Y.-L., Faltinsen, O.M., 2014a. A harmonic polynomial cell (hpc) method for 3d laplace equation with application in marine hydrodynamics. J. Comput. Phys. 274, 312-332. https://doi.org/10.1016/j.jcp.2014.06.021
  19. Shao, Y.-L., Faltinsen, O.M., 2014b. Fully-nonlinear wave-current-body interaction analysis by a harmonic polynomial cell method. J. Offshore Mech. Arct. Eng. 136, 031301. https://doi.org/10.1115/1.4026960
  20. Zhou, B., Wu, G., Meng, Q., 2016. Interactions of fully nonlinear solitary wave with a freely floating vertical cylinder. Eng.Anal. Bound. Elem. 69, 119-131. https://doi.org/10.1016/j.enganabound.2016.05.004

Cited by

  1. Efficient Nonlinear Hydrodynamic Models for Wave Energy Converter Design-A Scoping Study vol.8, pp.1, 2017, https://doi.org/10.3390/jmse8010035