References
- Atkinson, K., Han, W., 2009. Theoretical Numerical Analysis: a Functional Analysis Framework. Springer Science and Business Media.
- Boussinesq, J., 1871. Thorie de lintumescence liquide appele onde solitaire ou de translation, se propageant dans un canal rectangulaire. In: Comptes rendus hebdomadaires des sances de l'Acadmie des Sciences, p. 755.
- Cai, X., 2003. Overlapping domain decomposition methods. In: Advanced Topics in Computational Partial Differential Equations. Springer, pp. 57-95.
- Colicchio, G., Greco, M., Faltinsen, O., 2006. A bem-level set domaindecomposition strategy for non-linear and fragmented interfacial flows. Int. J. Numer. Methods Eng. 67, 1385-1419. https://doi.org/10.1002/nme.1680
- Colicchio, G., Greco, M., Lugni, C., Faltinsen, O.M., 2010. Towards a fully 3d domain-decomposition strategy for water-on-deck phenomena. J. Hydrodyn. Ser. B 22, 462-467. https://doi.org/10.1016/S1001-6058(09)60237-7
- Fenton, J., 1972. A ninth-order solution for the solitary wave. J. Fluid Mech. 53, 257-271. https://doi.org/10.1017/S002211207200014X
- Goring, D.G., 1978. Tsunamisethe Propagation of Long Waves onto a Shelf (Ph.D. thesis). California Institute of Technology.
- Grimshaw, R., 1971. The solitary wave in water of variable depth. Part 2. J. Fluid Mech. 46, 611-622. https://doi.org/10.1017/S0022112071000739
- Hanssen, F.-C., Bardazzi, A., Lugni, C., Greco, M., Faltinsen, O., Free-surface tracking with the harmonic polynomial cell method, under review on Int. J. for Numerical Methods in Engineering, 2017
- Intel, R., 2012. Intel Math Kernel Library Reference Manual. Technical Report, Tech. Rep. 630813-051US [Online]. Available: http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/mklman.pdf, 2011.
- Kim, C., Clement, A., Tanizawa, K., et al., 1999. Recent research and development of numerical wave tanks-a review. Int. J. Offshore Polar Eng. 9.
- Liang, H., Faltinsen, O.M., Shao, Y.L., 2015. Application of a 2d harmonic polynomial cell (hpc) method to singular flows and lifting problems. Appl. Ocean Res. 53, 75-90. https://doi.org/10.1016/j.apor.2015.07.011
- Ma, S., Hanssen, F.-C., Siddiqui, A., Greco, M., Faltinsen, O. Local and global properties of the harmonic polynomial cell method: in-depth analysis in two dimensions,under review on Int. J. for Numerical Methods in Engineering, 2017.
- Mo, W., 2010. Numerical Investigation of Solitary Wave Interaction with Group of Cylinders (Ph.D. thesis). Cornell University.
- Ogilvie, T.F., 1967. Nonlinear high-froude-number free-surface problems. J. Eng. Math. 1, 215-235. https://doi.org/10.1007/BF01540946
- Quarteroni, A., Valli, A., 1999. Domain Decomposition Methods for Partial Differential Equations. Oxford University Press.
- Shao, Y.-L., Faltinsen, O.M., 2012. Towards efficient fully-nonlinear potentialflow solvers in marine hydrodynamics. In: Proceedings of the 31st International Conference on Ocean, Offshore and Arctic Engineering(OMAE), Rio de Janeiro, Brazil, pp. 369-380.
- Shao, Y.-L., Faltinsen, O.M., 2014a. A harmonic polynomial cell (hpc) method for 3d laplace equation with application in marine hydrodynamics. J. Comput. Phys. 274, 312-332. https://doi.org/10.1016/j.jcp.2014.06.021
- Shao, Y.-L., Faltinsen, O.M., 2014b. Fully-nonlinear wave-current-body interaction analysis by a harmonic polynomial cell method. J. Offshore Mech. Arct. Eng. 136, 031301. https://doi.org/10.1115/1.4026960
- Zhou, B., Wu, G., Meng, Q., 2016. Interactions of fully nonlinear solitary wave with a freely floating vertical cylinder. Eng.Anal. Bound. Elem. 69, 119-131. https://doi.org/10.1016/j.enganabound.2016.05.004
Cited by
- Efficient Nonlinear Hydrodynamic Models for Wave Energy Converter Design-A Scoping Study vol.8, pp.1, 2017, https://doi.org/10.3390/jmse8010035