• Title/Summary/Keyword: Network-on-chip architecture

Search Result 85, Processing Time 0.028 seconds

Performance Analysis for MPEG-4 Video Codec Based on On-Chip Network

  • Chang, June-Young;Kim, Won-Jong;Bae, Young-Hwan;Han, Jin-Ho;Cho, Han-Jin;Jung, Hee-Bum
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.497-503
    • /
    • 2005
  • In this paper, we present a performance analysis for an MPEG-4 video codec based on the on-chip network communication architecture. The existing on-chip buses of system-on-a-chip (SoC) have some limitation on data traffic bandwidth since a large number of silicon IPs share the bus. An on-chip network is introduced to solve the problem of on-chip buses, in which the concept of a computer network is applied to the communication architecture of SoC. We compared the performance of the MPEG-4 video codec based on the on-chip network and Advanced Micro-controller Bus Architecture (AMBA) on-chip bus. Experimental results show that the performance of the MPEG-4 video codec based on the on-chip network is improved over 50% compared to the design based on a multi-layer AMBA bus.

  • PDF

Performance Analysis for Multimedia Video Codec on On-Chip Network (온칩 네트워크 기반 멀티미디어 비디오 코덱 성능 분석)

  • Chang, J.Y.;Kim, W.J.;Byun, K.J.;Eum, N.W.
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • In this paper, the performance analysis for multimedia video codec(MPEG-4, H.264) on on-chip network communication architecture is presented. The On-Chip Network (OCN) is the new communication architecture of multimedia SoC design that overcomes the limits of On-Chip Bus architecture by providing higher data traffic bandwidth, reusability and higher scalability. We compared the performance of MPEG-4, H.264 decoder based on-chip network and AMBA on-chip bus. Experimental results show that the performance of MPEG-4, H.264 based on on-chip network is improved over 33~56% compared to the design based on AMBA on-chip bus.

  • PDF

SoC Network Architecture for Efficient Multi-Channel On-Chip-Bus (효율적인 다중 채널 On-Chip-Bus를 위한 SoC Network Architecture)

  • Lee Sanghun;Lee Chanho;Lee Hyuk-Jae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.65-72
    • /
    • 2005
  • We can integrate more IP blocks on a silicon die as the development of fabrication technologies and EDA tools. Consequently, we can design complicated SoC architecture including multi-processors. However, most of existing SoC buses have bottleneck in on-chip communication because of shared bus architectures, which result in the performance degradation of systems. In most cases, the performance of a multi-processor system is determined by efficient on-chip communication and the well-balanced distribution of computation rather than the performance of the processors. We propose an efficient SoC Network Architecture(SNA) using crossbar routers which provide a solution to ensure enough communication bandwidth. The SNA can significantly reduce the bottleneck of on-chip communication by providing multi-channels for multi-masters. According to the proposed architecture, we design a model system for the SNA. The proposed architecture has a better efficiency by $40\%$ than the AMBA AHB according to a simulation result.

A System Level Network-on-chip Model with MLDesigner

  • Agarwal, Ankur;Shankar, Rabi;Pandya, A.S.;Lho, Young-Uhg
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2008
  • Multiprocessor architectures and platforms, such as, a multiprocessor system on chip (MPSoC) recently introduced to extend the applicability of the Moore's law, depend upon concurrency and synchronization in both software and hardware to enhance design productivity and system performance. With the rapidly approaching billion transistors era, some of the main problem in deep sub-micron technologies characterized by gate lengths in the range of 60-90 nm will arise from non scalable wire delays, errors in signal integrity and non-synchronized communication. These problems may be addressed by the use of Network on Chip (NOC) architecture for future System-on-Chip (SoC). We have modeled a concurrent architecture for a customizable and scalable NOC in a system level modeling environment using MLDesigner (from MLD Inc.). Varying network loads under various traffic scenarios were applied to obtain realistic performance metrics. We provide the simulation results for latency as a function of the buffer size. We have abstracted the area results for NOC components from its FPGA implementation. Modeled NOC architecture supports three different levels of quality-of-service (QoS).

A Deadlock Free Router Design for Network-on-Chip Architecture (NOC 구조용 교착상태 없는 라우터 설계)

  • Agarwal, Ankur;Mustafa, Mehmet;Shiuku, Ravi;Pandya, A.S.;Lho, Young-Ugh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.696-706
    • /
    • 2007
  • Multiprocessor system on chip (MPSoC) platform has set a new innovative trend for the System on Chip (SoC) design. With the rapidly approaching billion transistors era, some of the main problem in deep sub-micron technologies characterized by gate lengths in the range of 60-90 nm will arise from non scalable wire delays, errors in signal integrity and un-synchronized communication. These problems may be addressed by the use of Network on Chip (NOC) architecture for future SoC. Most future SoCs will use network architecture and a packet based communication protocol for on chip communication. This paper presents an adaptive wormhole routing with proactive turn prohibition to guarantee deadlock free on chip communication for NOC architecture. It shows a simple muting architecture with five full-duplex, flit-wide communication channels. We provide simulation results for message latency and compare results with those of dimension ordered techniques operating at the same link rates.

Implementation of a Context-awareness based UoC Architecture for MANET (MANET에서 상황인식 기반의 UoC Architecture 구현)

  • Doo, Kyoung-Min;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1128-1133
    • /
    • 2008
  • Context-aware computing has been attracting the attention as an approach to alleviating the inconvenience in human-computer interactions. This paper proposes a context-aware system architecture to be implemented on an UoC (Ubiquitous system on Chip). A new proposed technology of CRS (Context Recognition Switch) and DOS (Dynamic and Optimal Standard) based on Context-awareness system architecture with pre-processor, HPSP(High Performance Signal Processor) in this paper. And proposed a new algorithm using in network topology processor shows for Ubiquitous Computing System. implementing in UoC (Ubiquitous System on Chip) base on the IEEE 802.15.4 WPAN (Wireless Personal Area Network) standard. Also, This context-aware based UoC architecture has been developed to apply to mobile intelligent robots which would support human in a context-aware manner.

Mapping and Scheduling for Circuit-Switched Network-on-Chip Architecture

  • Wu, Chia-Ming;Chi, Hsin-Chou;Chang, Ruay-Shiung
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.111-120
    • /
    • 2009
  • Network-on-chip (NoC) architecture provides a highper-formance communication infrastructure for system-on-chip designs. Circuit-switched networks guarantee transmission latency and throughput; hence, they are suitable for NoC architecture with real-time traffic. In this paper, we propose an efficient integrated scheme which automatically maps application tasks onto NoC tiles, establishes communication circuits, and allocates a proper bandwidth for each circuit. Simulation results show that the average waiting times of packets in a switch in $6{\times}6$6, $8{\times}8$, and $10{\times}10$ mesh NoC networks are 0.59, 0.62, and 0.61, respectively. The latency of circuits is significantly decreased. Furthermore, the buffer of a switch in NoC only needs to accommodate the data of one time slot. The cost of the switch in the circuit-switched network can be reduced using our scheme. Our design provides an effective solution for a critical step in NoC design.

  • PDF

Design and Implementation of On-Chip Network Architecture for Improving Latency Efficiency (지연시간 효율 개선을 위한 On-Chip Network 구조 설계 및 구현)

  • Jo, Seong-Min;Cho, Han-Wook;Ha, Jin-Seok;Song, Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.56-65
    • /
    • 2009
  • As increasing the number of IPs integrated in a single chip and requiring high communication bandwidth on a chip, the trend of SoC communication architecture is changed from bus- or crossbar-based architecture to packet switched network architecture, NoC. However, highly complex control logics in routers require multiple cycles to switch packet. In this paper, we design low complex router to improve the communication latency. Our NoC design is verified by simulation platform modeled by ESL tool, SoC Designer. We also evaluate our NoC design comparing to the previous NoC architecture based on VC router. Our results show that our NoC architecture has less communication latency, even small throughput degradation (about 1-2%).

Multiple Network-on-Chip Model for High Performance Neural Network

  • Dong, Yiping;Li, Ce;Lin, Zhen;Watanabe, Takahiro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.28-36
    • /
    • 2010
  • Hardware implementation methods for Artificial Neural Network (ANN) have been researched for a long time to achieve high performance. We have proposed a Network on Chip (NoC) for ANN, and this architecture can reduce communication load and increase performance when an implemented ANN is small. In this paper, a multiple NoC models are proposed for ANN, which can implement both a small size ANN and a large size one. The simulation result shows that the proposed multiple NoC models can reduce communication load, increase system performance of connection-per-second (CPS), and reduce system running time compared with the existing hardware ANN. Furthermore, this architecture is reconfigurable and reparable. It can be used to implement different applications of ANN.

Implementation of A Pulse-mode Digital Neural Network with On-chip Learning Using Stochastic Computation (On-Chip 학습기능을 가진 확률연산 펄스형 디지털 신경망의 구현)

  • Wee, Jae-Woo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2296-2298
    • /
    • 1998
  • In this paper, an on-chip learning pulse-mode digital neural network with a massively parallel yet compact and flexible network architecture is suggested. Algebraic neural operations are replaced by stochastic processes using pseudo-random sequences and simple logic gates are used as basic computing elements. Using Back-propagation algorithm both feed-forward and learning phases are efficiently implemented with simple logical gates. RNG architecture using LFSR and barrel shifter are adopted to avoid some correlation between pulse trains. Suggested network is designed in digital circuit and its performance is verified by computer simulation.

  • PDF