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In this paper, we present a performance analysis for an 
MPEG-4 video codec based on the on-chip network 
communication architecture. The existing on-chip buses of 
system-on-a-chip (SoC) have some limitation on data 
traffic bandwidth since a large number of silicon IPs share 
the bus. An on-chip network is introduced to solve the 
problem of on-chip buses, in which the concept of a 
computer network is applied to the communication 
architecture of SoC. We compared the performance of the 
MPEG-4 video codec based on the on-chip network and 
Advanced Micro-controller Bus Architecture (AMBA) on-
chip bus. Experimental results show that the performance 
of the MPEG-4 video codec based on the on-chip network 
is improved over 50% compared to the design based on a 
multi-layer AMBA bus. 
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I. Introduction 

As system-on-a-chip (SoC) grows in design complexity, data 
traffic of IP cores becomes more and more important. 
Particularly in multimedia SoCs designs, such as video phones, 
teleconference systems, 3G-324M, MPEG-4, H.264, and 
HDTV, a considerable amount of data traffic is required. To 
accommodate all modules with sufficient data traffic 
bandwidth, an SoC designer should pay attention to on-chip 
interconnect design [1], [2]. In a platform-based design, 
forecasting beforehand SoC’s data traffic and designing 
suitable data communication architectures are important.  

Several factors such as bus speed, bus width, and bus 
architectures have a great deal of influence on the performance 
of the on-chip bus (OCB) architecture. Various types of bus 
architectures for SoCs are introduced: Advanced Micro-
controller Bus Architecture (AMBA) [3], CoreConnect [4], 
CoreFrame [5], and SiliconBackPlane [6] support the 
connection of multiple buses in arbitrary topologies. AMBA is 
classified into two groups: single-layer advanced system bus 
(ASB) or advanced high-performance bus (AHB)/ advanced 
peripheral bus (APB), and a multi-layer AHB/APB 
architecture. 

All of the OCB architectures mentioned above, while 
flexible and relatively inexpensive to implement, appear to 
have limited scalability due to the arbitrated, non-pipelined 
nature of their interconnection buses. OCB architectures are 
suitable for a relatively small number of IP cores on SoC. As 
the number of IP cores on SoC increases, bus bandwidth will 
degrade due to the bus collision from multi-masters. The 
introduction of multiple buses to improve bus bandwidth leads 
to the power inefficiency [7]. 
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The on-chip network (OCN) is the new communication 
architecture of SoC design that overcomes the limits of the 
OCB architecture by providing higher data traffic bandwidth 
and higher scalability [7]. The OCN architecture provides 
parallel communication among existing IP cores to improve 
data traffic bandwidth.  

Also the OCN’s direct connection feature between IP cores 
eliminates the need for different interface implementations for 
different bus widths, which improves scalability of the 
communication architecture. But one major disadvantage of 
the OCN is the silicon cost. The complexity of the router and 
the number of OCN components, FIFOs (first in, first out), 
switches, and arbiters, increases silicon cost compared to the 
OCB architectures.  

To select the communication architecture for SoC design, a 
performance analysis is essential. Many works have been done 
theoretically on OCN [7], [8]. However, not enough researches 
have yet been carried out on the performance analysis by 
applying an actual OCN architecture on SoC design and the 
studies on an OCN-based SoC platform.  

This paper presents the results of the performance analysis 
when applying an MPEG-4 codec on OCN architectures and 
compares them with those of single/multi-layer AMBA-based 
architectures. Section II describes the architectures of 
single/multi-layer AMBA and OCN. The performance analysis 
on each architecture and experimental results are presented in 
sections III and IV, respectively. 

II. SoC Bus Architectures 

In this section, we describe various bus architectures such as 
a single-layer ASB, multi-layer AHB, and OCN for an MPEG-
4 codec design, a typical multimedia application requiring a 
large amount of data traffic. For a performance analysis of the 
SoC bus architecture, we used MoVa [9], which is an MPEG-4 
 

Table 1. Specifications of MPEG-4 video codec, MoVa. 

Standard MPEG-4 simple profile @ level2 

Performance 
Codec: CIF 7.5fps/QCIF 30 fps 
Decoder: CIF 15fps/QCIP 30 fps 

Bit rate 128/133 kbps 

Video format SQCIF/QCIF(176×144)/CIF(352×288) 

Technology 0.35 µm 4-metal 

Gate count 1,700,000 gates 

Chip size 110.25 mm2 

Op. frequency 27 MHz 

 

codec system implemented by a single-layer ASB/APB. Its 
design specifications are shown in Table 1. 

1. Single-Layer Bus Architecture  

The block diagram of the MPEG-4 codec implemented on 
the single-layer bus (SLB) architecture is depicted in Fig. 1. 
The bus master ARM7TDMI processor can be programmed to 
process various video algorithms, for example, MPEG-4. It 
also fetches instructions from an on-chip memory (IntMem), 
executes them, and sets the control register for slave. The ASB 
bus consists of an arbiter, a decoder, and a bridge. Each 
element controls the bus master arbitration, the module 
selecting signal generation by address decoding, and the 
connection between two modules in sequence.  

The arbiter determines access rights of masters to the bus: an 
ARM or a direct memory access controller (DMAC). The 
decoder runs on a centralized address-decoding module, which 
generates a selection signal for each slave on the ASB bus. A 
bridge is the only bus master on the APB bus for peripheral 
slaves. The MPEG-4 codec hardware module comprises a 
codec hardware module (core module) and video input/output 
hardware module (I/O module). 
 

 

Fig. 1. Single-layer bus architecture. 
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In the SLB architecture, the basic bus operations of two bus 
masters, ARM processor and DMAC, are classified as follows:  

[A operation]: initialization of I/O modules by ARM 
processor. 

[B operation]: initialization of core modules by ARM 
processor. 

[C operation]: data transfer operation between SDRAM and 
I/O modules by the DMAC. 

[D operation]: data transfer operation between SDRAM and 
core modules by the DMAC. 

In the SLB architecture, while one master uses a physical bus 
the other master cannot use it. While the ARM processor 
initializes the control register of the hardware module, the 
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DMAC is supposed to wait for access to the bus, which results 
in performance degradation of the bus. 

2. Multi-layer Bus Architecture  

The multi-layer bus (MLB) architecture, based on the AHB 
protocol, consists of multiple physical buses and enables 
parallel access paths between multiple masters and slaves. This 
gives us the benefit of increased bandwidth on overall buses. 
Each master has its own AHB layer and is connected to the 
slave by an interconnection matrix (BusMatrix). Since each 
AHB layer has only one master, master-to-slave muxing is 
required.  

In Fig. 2, the MLB architecture consists of a 3-layer AHB 
bus: system AHB, core AHB, and I/O AHB, each having its 
own master, an ARM processor, core DMAC and I/O DMAC. 
The system AHB layer is connected to the ARM processor, 
arbiter, decoder, and bridge of the AHB. The ARM processor 
controls the core and I/O modules by initializing the control 
register of the core and I/O modules.  

The arbiter manages bus master arbitration. The decoder 
generates a slave module selection signal by address decoding. 
The I/O DMAC transfers data from SDRAM to the I/O 
module, and vice versa, on an I/O AHB layer, as does the core 
DMAC between the SDRAM and core module on the core 
AHB layer. 

In the MLB architecture, while the ARM processor sets the 
control register of the slave hardware module, the DMAC 
enables a data transfer between the SDRAM and slave module. 
In the case of setting the control registers of the core module, 
the I/O DMAC enables a data transfer between the SDRAM 
and I/O module through the I/O AHB layer. Also, during the 
ARM processor’s setting of the control registers of the I/O  
 

 

Fig. 2. Multi-layer bus architecture. 
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module on the I/O AHB layer, the core DMAC transfers data 
between the SDRAM and core module on the core AHB layer. 
Therefore, the MLB architecture increases both the parallel 
operation and the utilization of the bus, and consequently 
improves bandwidth of the bus compared to that of the SLB 
architecture. 

3. On-Chip Network Architecture  

The OCN architecture is composed of a master network 
interface (MNI), slave network interface (SNI), and crossbar 
switch. The MNI generates packets using control data from the 
ARM processor or DMAC and transfers them to a non-
blocking crossbar switch. 

The SNI transfers packets from the master to the slave module. 
The crossbar switch routes packets and works a channel function 
for a data transfer between the master and slave modules. The 
OCN architecture in Fig. 3 illustrates a design for improving 
bandwidth of the bus by increasing the parallel operation of the 
MLB. The bus master, like the ARM processor or DMAC, can 
elevate system performance by transferring data without latency. 
In an OCN, while the ARM processor sets the control registers 
of the slave module, the DMAC can transfer data to/from slave 
modules without latency. This is a featured structure of an OCN, 
which was hard to provide in the MLB.  

In the OCN architecture, we can increase the number of 
parallel operations through separating clusters from the OCN-
cluster (OCN-C) split architecture. As shown in Fig. 4, if we 
split the local buffer from the hardware module of the MPEG-4 
codec, we can enhance parallel operations. This results in an 
improvement of bus bandwidth by the following procedure: 
first, separating the operation of setting the control register of 
 

 

Fig. 3. On-chip network architecture. 
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the slave module (A) and data transfer through the DMAC (B), 
and second, executing a parallel operation.  

In the case of the MPEG-4 encoder, slave modules that 
transfer data to the SDRAM through the DMAC can be a 
video input module (VIM), motion estimation course (MEC), 
motion estimation fine/motion compensation (MEF/MC), and 
reconstruction (REC) modules. We split the local buffer of the 
hardware modules related to those and assign them to a local 
buffer cluster. This technique makes parallel operations more 
possible and improves system throughput. 
 

 

Fig. 4. OCN-cluster split architecture. 
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III. Performance Analysis  

In this chapter, we describe the method and results of our 
performance analysis on the MPEG-4 codec according to 
respective architectures of data communication. We use bus 
speed, bus width, bus architecture, and parallel operation based 
on bus architecture as parameters for the analysis. In the basic 
operation of the OCN architecture as shown in Fig. 3, the 
possible cases for parallel operation are {A,C}, {A,D}, {B,C}, 
 

Table 2. Parallel operation table of bus architectures. 

Parallel operation SLB MLB OCN 

{A,C} X X O 

{A,D} X O O 

{B,C} X O O 

{B,D} X X O 

 

and {B,D}. 
Table 2 summarizes the possible combinations for parallel 

operation according to respective bus architectures. Since a 
large number of masters share a common bus in the OCB, 
parallel operations such as {A,C} and {B,D} are impossible. In 
these cases, while one master is using the bus, the others have 
to wait for its termination. This consequently degrades bus 
bandwidth. A large number of masters transmit packet type 
data through a crossbar switch spread as a network in an OCN. 
In this case, parallel operations such as {A,C} and {B,D} are 
possible. The more parallel operations increase, the better bus 
bandwidth improvement can be achieved.  

For the performance analysis, operation cycles, dependence, 
the number of pipeline stages, and possible parallel operations 
on bus architectures are input variables. We can compute a 
maximum cycle count for processing a macro block (MB) by 
an MB-based pipeline scheduler. Then, we analyze the 
performance of the bus architecture based on the maximum 
number of cycle counts. 

1. Performance Analysis of SLB Architecture 

Table 3 shows the cycles of each operation obtained from 
the simulation of MoVa [9], which is an MPEG-4 codec 
system implemented with an SLB architecture. The hardware 
cycle of SLB is the maximum cycle of the MPEG-4 
hardware module. None of the SLB parallel operations 
{A,C}, {A,D}, {B,C}, or {B,D} are possible. In the case of 
{A,C} of the SLB architecture in Fig. 1, an I/O module 
cannot transfer data to the SDRAM through the DMAC, 
while the ARM processor uses buses for setting the control 
register of the I/O module. Since the DMAC has to wait 
during the ARM processor’s setting of the control register of 
the I/O module, bus bandwidth degrades. The SLB 
scheduling results for processing the MB show that the 
encoder runs 4,545 cycles with a 4-stage pipeline and that the 
decoder does 3,519 cycles with a 3-stage pipeline. 

2. Performance Analysis of MLB Architecture 

The MLB architecture uses a multi-layer AHB/APB that has 
a 32-bit data width and system clock extendible to 54 MHz. As 
bus width is extended to 32-bit, the operation cycle for a data 
transfer by the DMAC shrinks to 1/2. For the hardware cycle 
applied to the MLB in Table 3, we use an average execution 
time of cycles utilized when MoVa processes three video 
frames. Since the BusMatrix splits the I/O AHB and core AHB 
in an MLB architecture as shown in Fig. 2, parallel operations 
such as {A,D} and {B,C} are possible.  

Therefore, we can reduce the number of operations for  
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Table 3. Operation cycles of bus architectures. 

 MPEG-4 encoder MPEG-4 decoder 
 SLB MLB OCN OCN-C  SLB MLB OCN OCN-C

Operation Type Number of cycles Operation Type Number of cycles 
SWC0Init      FW  39  39  39 0 PSBUFReadInit FW 46  46  46 0 
SWC0          DMA  115  58  58 58 PSBUFRead DMA 324  162  162 162 
SWC1InitPre   SW  83  83  83 83 VLDInit  FW 67  67  67 0 
SWC1Init      FW  50  50  50 0 VLD  HW 2,240  173  173 173 
SWC1          DMA  299  150  150 150 SWF1YInit FW 130  130  130 0 
IRDecision    SW  30  30  30 30 SWF1YI DMA 109  55  55 55 
MECInit       FW  96  96  96 0 SWF1Y2InitPre SW 85  85  85 85 
MEC           HW  2,600  2,156  2,156 2,156 SWF1Y2Init FW 50  50  50 0 
IFWriteInit FW  157  0  0 0 SWF1Y2 DMA 109  55  55 55 
IFWrite DMA  545  273  273 0 SWF1Y3InitPre SW 80  80  80 80 
ISWriteInit FW  46  0  0 0 SWF1Y3Init FW 50  50  50 0 
ISWrite DMA  60  30  30 0 SWF1Y3 DMA 109  55  55 55 
MECPost       FW  34  34  34 0 SWF1Y4InitPre SW 85  85  85 85 
SWF0Init      FW  78  78  78 0 SWF1Y4Init FW 50  50  50 0 
SWF0          DMA  349  175  175 175 SWF1Y4 DMA 109  55  55 55 
SWF1YInitPre  SW  70  70  70 70 SWF1UInitPre SW 75  75  75 75 
SWF1YInit     FW  50  50  50 0 SWF1UInit FW 50  50  50 0 
SWF1Y         DMA  299  150  150 150 SWF1U DMA 109  55  55 55 
SWF1UInitPre  SW  77  77  77 77 SWF1VInitPre SW 79  79  79 79 
SWF1UInit     FW  50  50  50 0 SWF1V DMA 109  55  55 55 
SWF1U         DMA  109  55  55 55 SWF1VInit FW 50  50  50 0 
SWF1VInitPre  SW  77  77  77 77 ISWriteinit FW 46  0  0 0 
SWF1VInit     FW  50  50  50 0 ISWrite DMA 60  30  30 0 
SWF1V         DMA  109  55  55 55 VLDPost       FW 77  77  77 0 
MEFMCInit     FW  109  109  109 0 IQIDCTQInit    FW 72  72  72 72 
MEFMC         HW  2,500  1,805  1,805 1,805 IQIDCTQ   HW 1,200  997  997 997 
MEFMCPost     FW  74  74  74 0 MVMVDInit FW 40  40  40 0 
MVMVDInit     FW  50  50  50 0 MVMVD HW 150  76  76 76 
MVMVD         HW  192  76  76 76 MCInit FW 140  140  140 140 
HVLC          SW  130  130  130 130 MC  HW 700  700  700 700 
PreRC         SW  300  300  300 300 RECInit FW 35  35  35 0 
DCTQInit      FW  72  72  72 72 REC  HW 400  572  572 572 
DCTQ          HW  1,200  1,051  1,051 1,051 OFWriteInit FW 179  0  0 0 
IDCTQ         HW  1,200  997  997 997 OFWrite  DMA 434  217  217 217 
TVLCInit      FW  34  34  34 34 RECWriteInit FW 83  83  83 0 
TVLC          HW  1,300  231  231 231 RECWrite DMA 342  171  171 171 
TVLCPost      FW  24  24  24 24 DBReadInit FW 43  43  43 0 
PostRC        SW  340  340  340 340 DBRead  DMA 79  40  40 40 
SPInit        FW  103  103  103 103 DBInit FW 33  33  33 0 
SP            HW  114  64  64 64 DB HW 1,200  1,200  1,200 1,200 
RECInit       FW  35  35  35 0 DBWriteInit FW 84  84  84 84 
REC           HW  400  572  572 572 DBWrite  DMA 293  147  147 147 
RECWriteInit  FW  83  83  83 0 PostDB HW 200  200  200 200 
RECWrite      DMA  342  171  171 171      
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setting the control register of the I/O module and cycles related 
to data transfer by the I/O DMAC. From the scheduling with 
features of an {A,D} and {B,C} parallel operation, we find that 
the encoder runs on 3,510 cycles with a 4-stage pipeline and 
that the decoder does 2,100 cycles with a 3-stage pipeline. 

3. Performance Analysis of OCN Architecture 

In the OCN architecture depicted in Fig. 3, the DMAC can 
transfer data to/from slave modules without bus latency while 
the ARM processor sets the control registers of the slave 
module. That is, parallel operations {A,C} and {B,D}, which 
were impossible in the MLB, are able to work. All the parallel 
operations such as {A,C}, {A,D}, {B,C}, and {B,D} are 
possible. Since the operation of setting the control registers of 
the slave module and a data transfer through the DMAC 
operate simultaneously, we can reduce overall cycle time and 
get results showing that the encoder runs on 2,800 cycles with 
a 4-stage pipeline, while the decoder does 1,900 cycles with a 
3-stage pipeline. 

By splitting the hardware module and local buffer with an 
OCN-cluster split architecture, it is possible to reduce the 
operation cycle setting the control registers of the  slave 
module, and consequently to enhance bus bandwidth. For 
OCN-C scheduling when processing an MB, the encoder runs 
on 2,300 cycles with a 4-stage pipeline and the decoder does 
1,300 cycles with a 3-stage pipeline 

IV. Experimental Results 

Table 4 shows a performance comparison of bus 
architectures. The number of frames per second (fps) on an 
identical frequency is used for performance comparison.  

We find that 7.6 frames are processed in 27 MHz with the 
codec mode in an SLB. In the case of an MLB architecture, the 
performance increases up to 22 fps since we use AHB 
operating at 54 MHz. If we execute the SLB and MLB 
architectures with the same 27 MHz, we can get a 31.8% 
higher performance in the MLB than in the SLB architecture. 
We can process 34.4 fps with 54 MHz in the OCN-C 
architecture, which is a 56.4% improvement in performance 
compared to the MLB. 

The OCN-C architecture enhances the performance 31.3% 
higher than the OCN architecture. This implies that the 
manner of splitting clusters operating in parallel in OCN 
greatly affects the resulting performance. The ascending order 
of performance in the MPEG-4 codec based on the number 
of frames possible to process per second is as follows: SLB, 
MLB, OCN, and OCN-C. Figure 5 summarizes the 
performance results for them. 

Table 4. Operation cycle of bus architectures. 

Frame rate (fps) 
Bus type Coding 

mode 
Maximun 
cycle/MB

Execution 
time/frame 27 MHz 54 MHz

Encoder 4,545 70.0 ms 14.3 28.6 

Decoder 3,519 61.5 ms 16.3 32.6 SLB 

Codec  131.5 ms 7.6 15.2 

Encoder 3,510 54.0 ms 18.5 37 

Decoder 2,100 36.7 ms 27.3 54.6 MLB

Codec  90.7 ms 11 22 

Encoder 2,800 43.1 ms 23.2 46.4 

Decoder 1,900 33.2 ms 30.1 60.2 OCN

Codec  76.3 ms 13.1 26.2 

Encoder 2,300 35.4 ms 28.2 56.4 

Decoder 1,300 22.7 ms 44 88 OCN-C

Codec  58.1 ms 17.2 34.4 
 

 

Fig. 5. Performance comparisons of MPEG-4 video codec. 
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V. Conclusion 

This paper describes a performance analysis for applying an 
MPEG-4 codec on an on-chip network and compares it with 
the performance of a single/multi-layer AMBA. In the MPEG-
4 codec, the OCN-cluster split architecture gets the highest 
performance over the single/multi-layer AMBA and OCN 
architectures. In particular, the OCN-cluster split architecture 
enhances the performance by 56.4 and 31.3% compared to 
multi-layer AMBA and OCN architectures, respectively. This 
implies that the manner of splitting clusters operating in parallel 
in an OCN greatly affects the resulting performance. The OCN 
architecture is highly recommended in multimedia applications 
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that require large amounts of data traffic and high 
communication complexity such as HDTV and digital 
multimedia broadcasting [10]. 
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