

ETRI Journal, Volume 27, Number 5, October 2005 June-Young Chang et al. 497

In this paper, we present a performance analysis for an
MPEG-4 video codec based on the on-chip network
communication architecture. The existing on-chip buses of
system-on-a-chip (SoC) have some limitation on data
traffic bandwidth since a large number of silicon IPs share
the bus. An on-chip network is introduced to solve the
problem of on-chip buses, in which the concept of a
computer network is applied to the communication
architecture of SoC. We compared the performance of the
MPEG-4 video codec based on the on-chip network and
Advanced Micro-controller Bus Architecture (AMBA) on-
chip bus. Experimental results show that the performance
of the MPEG-4 video codec based on the on-chip network
is improved over 50% compared to the design based on a
multi-layer AMBA bus.

Keywords: SoC design, platform-based design, on-chip
network, MPEG-4 codec, on-chip bus.

Manuscript received Jan. 25, 2005; revised Aug. 23, 2005.
The material in this work was presented in part at IT-SoC 2004, Seoul, Korea, Oct. 2004.
June-Young Chang (phone: +82 42 860 6680, email: jychang@etri.re.kr), Won-Jong Kim

(email: wjkim@etri.re.kr), Young-Hwan Bae (email: yhbae@etri.re.kr), Jin Ho Han (email:
soc@etri.re.kr), Han-Jin Cho (email: hjcho@etri.re.kr), and Hee-Bum Jung (email:
hbjung@etri.re.kr) are with Basic Research Laboratory, ETRI, Daejeon, Korea.

I. Introduction

As system-on-a-chip (SoC) grows in design complexity, data
traffic of IP cores becomes more and more important.
Particularly in multimedia SoCs designs, such as video phones,
teleconference systems, 3G-324M, MPEG-4, H.264, and
HDTV, a considerable amount of data traffic is required. To
accommodate all modules with sufficient data traffic
bandwidth, an SoC designer should pay attention to on-chip
interconnect design [1], [2]. In a platform-based design,
forecasting beforehand SoC’s data traffic and designing
suitable data communication architectures are important.

Several factors such as bus speed, bus width, and bus
architectures have a great deal of influence on the performance
of the on-chip bus (OCB) architecture. Various types of bus
architectures for SoCs are introduced: Advanced Micro-
controller Bus Architecture (AMBA) [3], CoreConnect [4],
CoreFrame [5], and SiliconBackPlane [6] support the
connection of multiple buses in arbitrary topologies. AMBA is
classified into two groups: single-layer advanced system bus
(ASB) or advanced high-performance bus (AHB)/ advanced
peripheral bus (APB), and a multi-layer AHB/APB
architecture.

All of the OCB architectures mentioned above, while
flexible and relatively inexpensive to implement, appear to
have limited scalability due to the arbitrated, non-pipelined
nature of their interconnection buses. OCB architectures are
suitable for a relatively small number of IP cores on SoC. As
the number of IP cores on SoC increases, bus bandwidth will
degrade due to the bus collision from multi-masters. The
introduction of multiple buses to improve bus bandwidth leads
to the power inefficiency [7].

Performance Analysis for MPEG-4 Video Codec
Based on On-Chip Network

June-Young Chang, Won-Jong Kim, Young-Hwan Bae,
Jin Ho Han, Han-Jin Cho and Hee-Bum Jung

498 June-Young Chang et al. ETRI Journal, Volume 27, Number 5, October 2005

The on-chip network (OCN) is the new communication
architecture of SoC design that overcomes the limits of the
OCB architecture by providing higher data traffic bandwidth
and higher scalability [7]. The OCN architecture provides
parallel communication among existing IP cores to improve
data traffic bandwidth.

Also the OCN’s direct connection feature between IP cores
eliminates the need for different interface implementations for
different bus widths, which improves scalability of the
communication architecture. But one major disadvantage of
the OCN is the silicon cost. The complexity of the router and
the number of OCN components, FIFOs (first in, first out),
switches, and arbiters, increases silicon cost compared to the
OCB architectures.

To select the communication architecture for SoC design, a
performance analysis is essential. Many works have been done
theoretically on OCN [7], [8]. However, not enough researches
have yet been carried out on the performance analysis by
applying an actual OCN architecture on SoC design and the
studies on an OCN-based SoC platform.

This paper presents the results of the performance analysis
when applying an MPEG-4 codec on OCN architectures and
compares them with those of single/multi-layer AMBA-based
architectures. Section II describes the architectures of
single/multi-layer AMBA and OCN. The performance analysis
on each architecture and experimental results are presented in
sections III and IV, respectively.

II. SoC Bus Architectures

In this section, we describe various bus architectures such as
a single-layer ASB, multi-layer AHB, and OCN for an MPEG-
4 codec design, a typical multimedia application requiring a
large amount of data traffic. For a performance analysis of the
SoC bus architecture, we used MoVa [9], which is an MPEG-4

Table 1. Specifications of MPEG-4 video codec, MoVa.

Standard MPEG-4 simple profile @ level2

Performance
Codec: CIF 7.5fps/QCIF 30 fps
Decoder: CIF 15fps/QCIP 30 fps

Bit rate 128/133 kbps

Video format SQCIF/QCIF(176×144)/CIF(352×288)

Technology 0.35 µm 4-metal

Gate count 1,700,000 gates

Chip size 110.25 mm2

Op. frequency 27 MHz

codec system implemented by a single-layer ASB/APB. Its
design specifications are shown in Table 1.

1. Single-Layer Bus Architecture

The block diagram of the MPEG-4 codec implemented on
the single-layer bus (SLB) architecture is depicted in Fig. 1.
The bus master ARM7TDMI processor can be programmed to
process various video algorithms, for example, MPEG-4. It
also fetches instructions from an on-chip memory (IntMem),
executes them, and sets the control register for slave. The ASB
bus consists of an arbiter, a decoder, and a bridge. Each
element controls the bus master arbitration, the module
selecting signal generation by address decoding, and the
connection between two modules in sequence.

The arbiter determines access rights of masters to the bus: an
ARM or a direct memory access controller (DMAC). The
decoder runs on a centralized address-decoding module, which
generates a selection signal for each slave on the ASB bus. A
bridge is the only bus master on the APB bus for peripheral
slaves. The MPEG-4 codec hardware module comprises a
codec hardware module (core module) and video input/output
hardware module (I/O module).

Fig. 1. Single-layer bus architecture.

IntMem Arbiter
DMAC

SDRAM SP, HIF

MEC, MEF/MC,
DCT/Q, IQ/DCT,

MVMVD, VLD, TVLC,
REC/DB

Decoder VIM, ISC, VOM

Core module

Peripheral

APB
bridge

A
B D C

ASB

A
PB

I/O module

ARM7TDMI
processor

In the SLB architecture, the basic bus operations of two bus
masters, ARM processor and DMAC, are classified as follows:

[A operation]: initialization of I/O modules by ARM
processor.

[B operation]: initialization of core modules by ARM
processor.

[C operation]: data transfer operation between SDRAM and
I/O modules by the DMAC.

[D operation]: data transfer operation between SDRAM and
core modules by the DMAC.

In the SLB architecture, while one master uses a physical bus
the other master cannot use it. While the ARM processor
initializes the control register of the hardware module, the

ETRI Journal, Volume 27, Number 5, October 2005 June-Young Chang et al. 499

DMAC is supposed to wait for access to the bus, which results
in performance degradation of the bus.

2. Multi-layer Bus Architecture

The multi-layer bus (MLB) architecture, based on the AHB
protocol, consists of multiple physical buses and enables
parallel access paths between multiple masters and slaves. This
gives us the benefit of increased bandwidth on overall buses.
Each master has its own AHB layer and is connected to the
slave by an interconnection matrix (BusMatrix). Since each
AHB layer has only one master, master-to-slave muxing is
required.

In Fig. 2, the MLB architecture consists of a 3-layer AHB
bus: system AHB, core AHB, and I/O AHB, each having its
own master, an ARM processor, core DMAC and I/O DMAC.
The system AHB layer is connected to the ARM processor,
arbiter, decoder, and bridge of the AHB. The ARM processor
controls the core and I/O modules by initializing the control
register of the core and I/O modules.

The arbiter manages bus master arbitration. The decoder
generates a slave module selection signal by address decoding.
The I/O DMAC transfers data from SDRAM to the I/O
module, and vice versa, on an I/O AHB layer, as does the core
DMAC between the SDRAM and core module on the core
AHB layer.

In the MLB architecture, while the ARM processor sets the
control register of the slave hardware module, the DMAC
enables a data transfer between the SDRAM and slave module.
In the case of setting the control registers of the core module,
the I/O DMAC enables a data transfer between the SDRAM
and I/O module through the I/O AHB layer. Also, during the
ARM processor’s setting of the control registers of the I/O

Fig. 2. Multi-layer bus architecture.

ARM7TDMI
processor IntMem Arbiter

VIM, ISC, VOM

I/O module

Decoder APB
bridge

System AHB

APB

SP, HIF

Peripheral

MEC, MEF/MC, DCT/Q,
IQ/DCT, MVMVD, VLD,

TVLC, REC/DB

Core module

I/O AHB

I/O
DMAC

Core
DMAC

MUX

Core AHB

SDRAM
Bus

matrix

A

B C

D

module on the I/O AHB layer, the core DMAC transfers data
between the SDRAM and core module on the core AHB layer.
Therefore, the MLB architecture increases both the parallel
operation and the utilization of the bus, and consequently
improves bandwidth of the bus compared to that of the SLB
architecture.

3. On-Chip Network Architecture

The OCN architecture is composed of a master network
interface (MNI), slave network interface (SNI), and crossbar
switch. The MNI generates packets using control data from the
ARM processor or DMAC and transfers them to a non-
blocking crossbar switch.

The SNI transfers packets from the master to the slave module.
The crossbar switch routes packets and works a channel function
for a data transfer between the master and slave modules. The
OCN architecture in Fig. 3 illustrates a design for improving
bandwidth of the bus by increasing the parallel operation of the
MLB. The bus master, like the ARM processor or DMAC, can
elevate system performance by transferring data without latency.
In an OCN, while the ARM processor sets the control registers
of the slave module, the DMAC can transfer data to/from slave
modules without latency. This is a featured structure of an OCN,
which was hard to provide in the MLB.

In the OCN architecture, we can increase the number of
parallel operations through separating clusters from the OCN-
cluster (OCN-C) split architecture. As shown in Fig. 4, if we
split the local buffer from the hardware module of the MPEG-4
codec, we can enhance parallel operations. This results in an
improvement of bus bandwidth by the following procedure:
first, separating the operation of setting the control register of

Fig. 3. On-chip network architecture.

ARM7TDMI
processor DMAC SDRAM

MNI MNI

SNI SNI

MEC, MEF/MC, DCT/Q,
IQ/DCT, MVMVD, VLD,

TVLC, REC/DB
VIM, ISC, VOM

Core module
I/O module

B
A

C

D

On-chip network
crossbar switch

500 June-Young Chang et al. ETRI Journal, Volume 27, Number 5, October 2005

the slave module (A) and data transfer through the DMAC (B),
and second, executing a parallel operation.

In the case of the MPEG-4 encoder, slave modules that
transfer data to the SDRAM through the DMAC can be a
video input module (VIM), motion estimation course (MEC),
motion estimation fine/motion compensation (MEF/MC), and
reconstruction (REC) modules. We split the local buffer of the
hardware modules related to those and assign them to a local
buffer cluster. This technique makes parallel operations more
possible and improves system throughput.

Fig. 4. OCN-cluster split architecture.

ARM7TDMI
processor DMAC SDRAM

IF BUF

VIM

On-chip network

MEC MEF
/MC

MVMVD HVLC SP OS

RES DCT/Q QCO TVLC BS

IQ/IDCT ID REC

MC SWC SWF IF BUF

REC BUF

B

Core cluster

Local buffer cluster

A

III. Performance Analysis

In this chapter, we describe the method and results of our
performance analysis on the MPEG-4 codec according to
respective architectures of data communication. We use bus
speed, bus width, bus architecture, and parallel operation based
on bus architecture as parameters for the analysis. In the basic
operation of the OCN architecture as shown in Fig. 3, the
possible cases for parallel operation are {A,C}, {A,D}, {B,C},

Table 2. Parallel operation table of bus architectures.

Parallel operation SLB MLB OCN

{A,C} X X O

{A,D} X O O

{B,C} X O O

{B,D} X X O

and {B,D}.
Table 2 summarizes the possible combinations for parallel

operation according to respective bus architectures. Since a
large number of masters share a common bus in the OCB,
parallel operations such as {A,C} and {B,D} are impossible. In
these cases, while one master is using the bus, the others have
to wait for its termination. This consequently degrades bus
bandwidth. A large number of masters transmit packet type
data through a crossbar switch spread as a network in an OCN.
In this case, parallel operations such as {A,C} and {B,D} are
possible. The more parallel operations increase, the better bus
bandwidth improvement can be achieved.

For the performance analysis, operation cycles, dependence,
the number of pipeline stages, and possible parallel operations
on bus architectures are input variables. We can compute a
maximum cycle count for processing a macro block (MB) by
an MB-based pipeline scheduler. Then, we analyze the
performance of the bus architecture based on the maximum
number of cycle counts.

1. Performance Analysis of SLB Architecture

Table 3 shows the cycles of each operation obtained from
the simulation of MoVa [9], which is an MPEG-4 codec
system implemented with an SLB architecture. The hardware
cycle of SLB is the maximum cycle of the MPEG-4
hardware module. None of the SLB parallel operations
{A,C}, {A,D}, {B,C}, or {B,D} are possible. In the case of
{A,C} of the SLB architecture in Fig. 1, an I/O module
cannot transfer data to the SDRAM through the DMAC,
while the ARM processor uses buses for setting the control
register of the I/O module. Since the DMAC has to wait
during the ARM processor’s setting of the control register of
the I/O module, bus bandwidth degrades. The SLB
scheduling results for processing the MB show that the
encoder runs 4,545 cycles with a 4-stage pipeline and that the
decoder does 3,519 cycles with a 3-stage pipeline.

2. Performance Analysis of MLB Architecture

The MLB architecture uses a multi-layer AHB/APB that has
a 32-bit data width and system clock extendible to 54 MHz. As
bus width is extended to 32-bit, the operation cycle for a data
transfer by the DMAC shrinks to 1/2. For the hardware cycle
applied to the MLB in Table 3, we use an average execution
time of cycles utilized when MoVa processes three video
frames. Since the BusMatrix splits the I/O AHB and core AHB
in an MLB architecture as shown in Fig. 2, parallel operations
such as {A,D} and {B,C} are possible.

Therefore, we can reduce the number of operations for

ETRI Journal, Volume 27, Number 5, October 2005 June-Young Chang et al. 501

Table 3. Operation cycles of bus architectures.

 MPEG-4 encoder MPEG-4 decoder
 SLB MLB OCN OCN-C SLB MLB OCN OCN-C

Operation Type Number of cycles Operation Type Number of cycles
SWC0Init FW 39 39 39 0 PSBUFReadInit FW 46 46 46 0
SWC0 DMA 115 58 58 58 PSBUFRead DMA 324 162 162 162
SWC1InitPre SW 83 83 83 83 VLDInit FW 67 67 67 0
SWC1Init FW 50 50 50 0 VLD HW 2,240 173 173 173
SWC1 DMA 299 150 150 150 SWF1YInit FW 130 130 130 0
IRDecision SW 30 30 30 30 SWF1YI DMA 109 55 55 55
MECInit FW 96 96 96 0 SWF1Y2InitPre SW 85 85 85 85
MEC HW 2,600 2,156 2,156 2,156 SWF1Y2Init FW 50 50 50 0
IFWriteInit FW 157 0 0 0 SWF1Y2 DMA 109 55 55 55
IFWrite DMA 545 273 273 0 SWF1Y3InitPre SW 80 80 80 80
ISWriteInit FW 46 0 0 0 SWF1Y3Init FW 50 50 50 0
ISWrite DMA 60 30 30 0 SWF1Y3 DMA 109 55 55 55
MECPost FW 34 34 34 0 SWF1Y4InitPre SW 85 85 85 85
SWF0Init FW 78 78 78 0 SWF1Y4Init FW 50 50 50 0
SWF0 DMA 349 175 175 175 SWF1Y4 DMA 109 55 55 55
SWF1YInitPre SW 70 70 70 70 SWF1UInitPre SW 75 75 75 75
SWF1YInit FW 50 50 50 0 SWF1UInit FW 50 50 50 0
SWF1Y DMA 299 150 150 150 SWF1U DMA 109 55 55 55
SWF1UInitPre SW 77 77 77 77 SWF1VInitPre SW 79 79 79 79
SWF1UInit FW 50 50 50 0 SWF1V DMA 109 55 55 55
SWF1U DMA 109 55 55 55 SWF1VInit FW 50 50 50 0
SWF1VInitPre SW 77 77 77 77 ISWriteinit FW 46 0 0 0
SWF1VInit FW 50 50 50 0 ISWrite DMA 60 30 30 0
SWF1V DMA 109 55 55 55 VLDPost FW 77 77 77 0
MEFMCInit FW 109 109 109 0 IQIDCTQInit FW 72 72 72 72
MEFMC HW 2,500 1,805 1,805 1,805 IQIDCTQ HW 1,200 997 997 997
MEFMCPost FW 74 74 74 0 MVMVDInit FW 40 40 40 0
MVMVDInit FW 50 50 50 0 MVMVD HW 150 76 76 76
MVMVD HW 192 76 76 76 MCInit FW 140 140 140 140
HVLC SW 130 130 130 130 MC HW 700 700 700 700
PreRC SW 300 300 300 300 RECInit FW 35 35 35 0
DCTQInit FW 72 72 72 72 REC HW 400 572 572 572
DCTQ HW 1,200 1,051 1,051 1,051 OFWriteInit FW 179 0 0 0
IDCTQ HW 1,200 997 997 997 OFWrite DMA 434 217 217 217
TVLCInit FW 34 34 34 34 RECWriteInit FW 83 83 83 0
TVLC HW 1,300 231 231 231 RECWrite DMA 342 171 171 171
TVLCPost FW 24 24 24 24 DBReadInit FW 43 43 43 0
PostRC SW 340 340 340 340 DBRead DMA 79 40 40 40
SPInit FW 103 103 103 103 DBInit FW 33 33 33 0
SP HW 114 64 64 64 DB HW 1,200 1,200 1,200 1,200
RECInit FW 35 35 35 0 DBWriteInit FW 84 84 84 84
REC HW 400 572 572 572 DBWrite DMA 293 147 147 147
RECWriteInit FW 83 83 83 0 PostDB HW 200 200 200 200
RECWrite DMA 342 171 171 171

502 June-Young Chang et al. ETRI Journal, Volume 27, Number 5, October 2005

setting the control register of the I/O module and cycles related
to data transfer by the I/O DMAC. From the scheduling with
features of an {A,D} and {B,C} parallel operation, we find that
the encoder runs on 3,510 cycles with a 4-stage pipeline and
that the decoder does 2,100 cycles with a 3-stage pipeline.

3. Performance Analysis of OCN Architecture

In the OCN architecture depicted in Fig. 3, the DMAC can
transfer data to/from slave modules without bus latency while
the ARM processor sets the control registers of the slave
module. That is, parallel operations {A,C} and {B,D}, which
were impossible in the MLB, are able to work. All the parallel
operations such as {A,C}, {A,D}, {B,C}, and {B,D} are
possible. Since the operation of setting the control registers of
the slave module and a data transfer through the DMAC
operate simultaneously, we can reduce overall cycle time and
get results showing that the encoder runs on 2,800 cycles with
a 4-stage pipeline, while the decoder does 1,900 cycles with a
3-stage pipeline.

By splitting the hardware module and local buffer with an
OCN-cluster split architecture, it is possible to reduce the
operation cycle setting the control registers of the slave
module, and consequently to enhance bus bandwidth. For
OCN-C scheduling when processing an MB, the encoder runs
on 2,300 cycles with a 4-stage pipeline and the decoder does
1,300 cycles with a 3-stage pipeline

IV. Experimental Results

Table 4 shows a performance comparison of bus
architectures. The number of frames per second (fps) on an
identical frequency is used for performance comparison.

We find that 7.6 frames are processed in 27 MHz with the
codec mode in an SLB. In the case of an MLB architecture, the
performance increases up to 22 fps since we use AHB
operating at 54 MHz. If we execute the SLB and MLB
architectures with the same 27 MHz, we can get a 31.8%
higher performance in the MLB than in the SLB architecture.
We can process 34.4 fps with 54 MHz in the OCN-C
architecture, which is a 56.4% improvement in performance
compared to the MLB.

The OCN-C architecture enhances the performance 31.3%
higher than the OCN architecture. This implies that the
manner of splitting clusters operating in parallel in OCN
greatly affects the resulting performance. The ascending order
of performance in the MPEG-4 codec based on the number
of frames possible to process per second is as follows: SLB,
MLB, OCN, and OCN-C. Figure 5 summarizes the
performance results for them.

Table 4. Operation cycle of bus architectures.

Frame rate (fps)
Bus type Coding

mode
Maximun
cycle/MB

Execution
time/frame 27 MHz 54 MHz

Encoder 4,545 70.0 ms 14.3 28.6

Decoder 3,519 61.5 ms 16.3 32.6 SLB

Codec 131.5 ms 7.6 15.2

Encoder 3,510 54.0 ms 18.5 37

Decoder 2,100 36.7 ms 27.3 54.6 MLB

Codec 90.7 ms 11 22

Encoder 2,800 43.1 ms 23.2 46.4

Decoder 1,900 33.2 ms 30.1 60.2 OCN

Codec 76.3 ms 13.1 26.2

Encoder 2,300 35.4 ms 28.2 56.4

Decoder 1,300 22.7 ms 44 88 OCN-C

Codec 58.1 ms 17.2 34.4

Fig. 5. Performance comparisons of MPEG-4 video codec.

28.6
32.6

15.2

37

54.6

22

46.4

60.2

26.2

56.4

88

34.4

0

10

20

30

40

50

60

70

80

90

N
um

be
r o

f f
ra

m
e

(fp
s)

Bus architectures

Encoder
Decoder
Codec

Encoder 28.6 37 46.4 56.4
Decoder 32.6 54.6 60.2 88

Codec 15.2 22 26.2 34.4

SLB MLB OCN OCN-C

V. Conclusion

This paper describes a performance analysis for applying an
MPEG-4 codec on an on-chip network and compares it with
the performance of a single/multi-layer AMBA. In the MPEG-
4 codec, the OCN-cluster split architecture gets the highest
performance over the single/multi-layer AMBA and OCN
architectures. In particular, the OCN-cluster split architecture
enhances the performance by 56.4 and 31.3% compared to
multi-layer AMBA and OCN architectures, respectively. This
implies that the manner of splitting clusters operating in parallel
in an OCN greatly affects the resulting performance. The OCN
architecture is highly recommended in multimedia applications

ETRI Journal, Volume 27, Number 5, October 2005 June-Young Chang et al. 503

that require large amounts of data traffic and high
communication complexity such as HDTV and digital
multimedia broadcasting [10].

References

[1] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L.Todd,
Surviving the SOC Revolution: A Guide to Platform-Based
Design, Kluwer Academic Publishers, ARM Ltd, Nov. 1999.

[2] Kyeong Keol Ryu, Eung Shin, Mooney, and V.J., “A Comparison
of Five Different Multiprocessor SoC Bus Architectures,” Proc. of
the EUROMICRO Symposium on Digital. Systems Design, Sept.
2001, pp. 202-209.

[3] AMBA Specification Rev 2.0m, Document Number ARM IHI
0011A.

[4] CoreConnect Bus Architecture, http://www.chips.ibm.com/
products/coreconnect.

[5] B. Cordan, “An Efficient Bus Architecture for System-on-Chip
Design,” Proc. IEEE 1999 Custom Integrated Circuits Conf.,
May 1999, pp. 623–626.

[6] SiliconBackplane Bus Architecture, http://www.sonicsinc.com/
sonics/products/siliconbackplaneIII.

[7] L. Benini and G. Micheli, “Networks on Chips: A New SoC
Paradigm,” IEEE Computers, Jan. 2002, pp. 70-78.

[8] Se-Joong Lee et al., “An 800MHz Star-Connected On-Chip
Network for Application to System on a Chip,” IEEE ISSCC
Dig. Tech. Papers, Feb. 2003, pp. 468-469.

[9] Seong-Min Kim, Ju-Hyun Park, Seong-Mo Park, Bon-Tae Koo,
Kyoung-Seon Shin, Ki-Bum Suh, Ig-Kyun Kim, Nak-Woong
Eum, and Kyung-Soo Kim, “Hardware-Software Implementation
of MPEG-4 Video Codec,” ETRI J., vol.25, no.6, Dec. 2003,
pp.489-502.

[10] Bong-Ho Lee, Kyu-Tae Yang, Young Kwon Hahm, Soo In Lee,
and Chieteuk Ahn, “A Framework for MPEG-4 Contents
Delivery over DMB,” ETRI J., vol.26, no.2, Apr. 2004, pp.112-
121.

June-Young Chang received the BS degree in
computer science from Chonnam National
University in Gwangju, Korea, in 1985, the MS
degree in computer science from Chungang
University in Seoul, Korea, in 1987 and the PhD
degree in computer science from Chonnam
National University in 1996. He joined ETRI in

1999 as a Senior Member. His current research interests include
VLSI/CAD, SoC design methodology and multimedia SoC design.

Won-Jong Kim received the BS degree in
electronics engineering from Chonnam National
University in 1989. He received the MS and PhD
degrees in electronics engineering from Hanyang
University in 1992 and 1999. He joined ETRI in
2000 as a Senior Member. His research interests
include CAD for VLSI, SOC design methodology,

and multimedia SOC design.

Young-Hwan Bae was born in Seoul, Korea on
October 29, 1962. He received the BS and MS
degrees in electronic engineering from Hanyang
University in 1985 and 1987. He joined ETRI in
1987, where he works in developing CAD tools
and design methodology for SOC.

Jin Ho Han was born in Korea on Feb 8, 1977. He
received the BS and MS degrees in electronic
engineering from Korea Advanced Institute of
Science and Technology in 1998 and 2001. He joined
ETRI in 2001, where he currently works in low power
embedded processor design and SOC design
methodology development as a project member.

Han-Jin Cho was born in Seoul, Korea on July 8,
1960. He received the BS degree in electronic
engineering from Hanyang University in 1982. He
received the MS and PhD degrees in electrical
engineering from the New Jersey Institute of
Technology in 1987 and the University of
Florida in 1992, respectively. He joined ETRI in

1992, where he currently works in SOC design methodology development
and wireless multimedia SOC design as a project manager.

Hee-Bum Jung received the BS degree in
electronics engineering from Sogang University,
Seoul, Korea in 1981, the MS degree in electrical
engineering from Korea Advanced Institute of
Science and Technology in 1983, and the PhD
degree in electrical engineering from Columbia
University, New York, NY, USA in 1992. From

1983 to 1987 he was with KIET (formerly ETRI), Gumi, Korea where he
was involved in the development of custom integrated circuit design and
modeling. While in Columbia University, he was also a student intern
(1990 to 1991) of AT&T Bell Laboratory, Murray Hill, NJ, U.S.A. with
the research topic of HBT modeling. He rejoined ETRI in 1993 to pursue
VLSI circuit design, and is currently directing the SoC design research
department. His interests include platform-based SoC design methodology
and low power SoC design for portable IT equipment.

