• 제목/요약/키워드: Negatively associated random variables

검색결과 50건 처리시간 0.023초

A WEAK LAW FOR WEIGHTED SUMS OF ARRAY OF ROW NA RANDOM VARIABLES

  • Baek, Jong-Il;Liang, Han-Ying;Choi, Jeong-Yeol
    • 대한수학회보
    • /
    • 제40권2호
    • /
    • pp.341-349
    • /
    • 2003
  • Let {$x_{nk}\;$\mid$1\;\leq\;k\;\leq\;n,\;n\;\geq\;1$} be an array of random varianbles and $\{a_n$\mid$n\;\geq\;1\}\;and\;\{b_n$\mid$n\;\geq\;1} be a sequence of constants with $a_n\;>\;0,\;b_n\;>\;0,\;n\;\geq\;1. In this paper, for array of row negatively associated(NA) random variables, we establish a general weak law of large numbers (WLLA) of the form (${\sum_{\kappa=1}}^n\;a_{\kappa}X_{n\kappa}\;-\;\nu_{n\kappa})\;/b_n$ converges in probability to zero, as $n\;\rightarrow\;\infty$, where {$\nu_{n\kappa}$\mid$1\;\leq\;\kappa\;\leq\;n,\;n\;\geq\;1$} is a suitable array of constants.

CONVERGENCE OF WEIGHTED SUMS FOR DEPENDENT RANDOM VARIABLES

  • Liang, Han-Yang;Zhang, Dong-Xia;Baek, Jong-Il
    • 대한수학회지
    • /
    • 제41권5호
    • /
    • pp.883-894
    • /
    • 2004
  • We discuss in this paper the strong convergence for weighted sums of negative associated (in abbreviation: NA) arrays. Meanwhile, the central limit theorem for weighted sums of NA variables and linear process based on NA variables is also considered. As corollary, we get the results on iid of Li et al. ([10]) in NA setting.

PRECISE ASYMPTOTICS IN STRONG LIMIT THEOREMS FOR NEGATIVELY ASSOCIATED RANDOM FIELDS

  • Ryu, Dae-Hee
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.1025-1034
    • /
    • 2010
  • Let {$X_n$, $n\;{\in}\;\mathbb{Z}_+^d$} be a field of identically distributed and negatively associated random variables with mean zero and set $S_n\;=\;{\sum}_{k{\leq}n}\;X_k$, $n\;{\in}\;\mathbb{Z}_+^d$, $d\;{\geq}\;2$. We investigate precise asymptotics for ${\sum}_n|n|^{r/p-2}P(|S_n|\;{\geq}\;{\epsilon}|n|^{1/p}$ and ${\sum}_n\;\frac{(\log\;|n|)^{\delta}}{|n|}P(|S_n|\;{\geq}\;{\epsilon}\;\sqrt{|n|\log|n|)}$, ($0\;{\leq}\;{\delta}\;{\leq}\;1$) as ${\epsilon}{\searrow}0$.

On Complete Convergence for Weighted Sums of Pairwise Negatively Quadrant Dependent Sequences

  • Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • 제19권2호
    • /
    • pp.247-256
    • /
    • 2012
  • In this paper we prove the complete convergence for weighted sums of pairwise negatively quadrant dependent random variables. Some results on identically distributed and negatively associated setting of Liang and Su (1999) are generalized and extended to the pairwise negative quadrant dependence case.

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

  • Ryu, Dae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • 제16권5호
    • /
    • pp.841-849
    • /
    • 2009
  • Let {$X_n$, n ${\ge}$ 1} be a negatively associated sequence of identically distributed random variables with mean zeros and positive finite variances. Set $S_n$ = ${\Sigma}^n_{i=1}\;X_i$. Suppose that 0 < ${\sigma}^2=EX^2_1+2{\Sigma}^{\infty}_{i=2}\;Cov(X_1,\;X_i)$ < ${\infty}$. We prove that, if $EX^2_1(log^+{\mid}X_1{\mid})^{\delta}$ < ${\infty}$ for any 0< ${\delta}{\le}1$, then $\lim_{{\epsilon}\downarrow0}{\epsilon}^{2{\delta}}\sum_{{n=2}}^{\infty}\frac{(logn)^{\delta-1}}{n^2}ES^2_nI({\mid}S_n{\mid}\geq{\epsilon}{\sigma}\sqrt{nlogn}=\frac{E{\mid}N{\mid}^{2\delta+2}}{\delta}$, where N is the standard normal random variable. We also prove that if $S_n$ is replaced by $M_n=max_{1{\le}k{\le}n}{\mid}S_k{\mid}$ then the precise rate still holds. Some results in Fu and Zhang (2007) are improved to the complete moment case.

ON THE PRECISE ASYMPTOTICS IN COMPLETE MOMENT CONVERGENCE OF NA SEQUENCES

  • Han, Kwang-Hee
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.977-986
    • /
    • 2010
  • Let $X_1$, $X_2$, $\cdots$ be identically distributed negatively associated random variables with $EX_1\;=\;0$ and $E|X_1|^3$ < $\infty$. In this paper we prove $lim_{{\epsilon\downarrow}0}\;\frac{1}{-\log\;\epsilon}\sum\limits_{n=1}^\infty\frac{1}{n^2}ES_n^2I\{|S_n|\;{\geq}\;{\sigma\epsilon}n\}\;=\;2$ and $lim_{\epsilon\downarrow0}\;\epsilon^{2-p}\sum\limits_{n=1}^\infty\frac{1}{n^p}$ $E|S_n|^pI\{|S_n|\;{\geq}\;{\sigma\epsilon}n\}\;=\;\frac{2}{2-p}$ for 0 < p < 2, where $S_n\;=\;\sum\limits_{i=1}^{n}X_i$ and 0 < $\sigma^2\;=\;EX_1^2\;+\;\sum\limits_{i=2}^{\infty}Cov(X_1,\;X_i)$ < $\infty$. We consider some results of i.i.d. random variables obtained by Liu and Lin(2006) under negative association assumption.

COMPLETE CONVERGENCE FOR ARRAY OF ROWWISE DEPENDENT RANDOM VARIABLES

  • Baek, Jong-Il;Park, Sung-Tae
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.829-842
    • /
    • 2009
  • Let {$X_{ni}|1\;{\le}\;i\;{\le}\;n$, $n\;{\ge}\;1$} be an array of rowwise negatively associated random variables and let $\alpha$ > 1/2, 0 < p < 2 ${\alpha}p\;{\ge}\;1$. In this paper we discuss $n^{{\alpha}p-2}h(n)$ max $_{1\;{\le}\;k{\le}n}\;|\;{\sum}^k_{i=1}\;X_{ni}|/n^{\alpha}\;{\to}\;0$ completely as $n\;{\to}\;{\infty}$ under not necessarily identically distributed with a suitable conditions and h(x) > 0 is a slowly varying function as $x\;{\to}\;{\infty}$. In addition, we obtained that $n^{{\alpha}p-2}h(n)$ max $_{1\;{\le}\;k{\le}n}\;|\;{\sum}^k_{i=1}\;X_{ni}|/n^{\alpha}\;{\to}\;0$ completely as $n\;{\to}\;{\infty}$ if and only if $E|X_{11}|^ph(|X_{11}|^{1/\alpha})\;<\;{\infty}$ and $EX_{11}\;=\;0$ under identically distributed case and some corollaries are obtained.

  • PDF

ON THE EXPONENTIAL INEQUALITY FOR NEGATIVE DEPENDENT SEQUENCE

  • Kim, Tae-Sung;Kim, Hyun-Chull
    • 대한수학회논문집
    • /
    • 제22권2호
    • /
    • pp.315-321
    • /
    • 2007
  • We show an exponential inequality for negatively associated and strictly stationary random variables replacing an uniform boundedness assumption by the existence of Laplace transforms. To obtain this result we use a truncation technique together with a block decomposition of the sums. We also identify a convergence rate for the strong law of large number.