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EXPONENTIAL PROBABILITY INEQUALITY FOR
LINEARLY NEGATIVE QUADRANT DEPENDENT RANDOM
VARIABLES

M1-Hwa Ko', YoNg-KaB CHOI?, AND YUE-SOON CHOI

ABSTRACT. In this paper, a Berstein-Hoeffding type inequality is estab-
lished for linearly negative quadrant dependent random variables. A con-
dition is given for almost sure convergence and the associated rate of
convergence is specified.

1. Introduction

Lehmann [6] introduced a simple and natural definition of negative depen-
dence: A sequence {X;, 1 < i < n} of random variables is said to be pair-
wise negative quadrant dependent (pairwise NQD) if for any real z;, z; and
1 # j, P(Xi >z, X; > ;) < P(X; > 2;)P(X; > xj). Much stronger con-
cept than NQD was considered by Joag-Dev and Proschan [4]: A sequence
{X;, 1 <1 < n} is said to be negatively associated(NA) if for any disjoint
subsets, A, B C {1, 2,...,n} and any real coordinatewise increasing functions
f on R% and g on RE, Cov(f(X;, i € A), g(X;, i € B)) <0.

Instead of negative association, Newman [8] noticed that his method of
proof yielding the central limit theorem for negatively associated sequence re-
quires only that positive linear combinations of the random variables are NQD,
i.e., the random variables are linearly negative quadrant dependent (LNQD).
This notion of negative dependence was formulated by Newman [8] as follows:
{X,, n € N} is a sequence of LNQD random variables if for any disjoint sub-
sets A, B of N and positive r;, the random vector (3 ;. 4 7:.Xi, Y ;cpTiXi) is
NQD.

Negatively associated sequence are LNQD and LNQD sequences are not nec-
essarily NA, as it can be seen from examples in Newman [8] or Joag-Dev [3].
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We note also that negative association and its weaker concepts are of consider-
able use in probability and statistics (cf. Joag-Dev and Proschan [4]; Newman
[8] and the references there in).

Newmann [8] was first to establish a central limit theorem for LNQD random
variables, Zhang (2000) proved a functional central limit theorem for LNQD
random fields and Kim, Ko and Ryu (2004) derived a general central limit
theorem for weighted sum of LNQD random variables.

Let Xj, X5,... be random variables defined on the underlying probability
space(Q2, A, P) and set S, for sum of the first n random variables, > ., X;,
and S, for S,,/n. The problem of providing exponential bounds for the proba-
bilities P(|Sn| > €)(e > 0) is of paramount importance, both in probability and
statistics. From a statistical viewpoint, such inequalities can be used, among
other things, for the purpose of providing rates of convergence (both in the
probability sense and almost surely) for estimates of various quantities. Espe-
cially so in a nonparametric setting, where the advantages of structure are not
available to the investigator. Exponential inequalities for various kinds of ran-
dom variables were studied extensively. Some of these exponential inequalities
were studied by Devroye [1], Roussas [9] and Shao [10].

In this paper, a Bernstein-Hoeffding-type inequality is established for lin-
early negative quadrant dependent random variables. A condition is also given
for almost sure convergence, and the associated rate of convergence is consid-
ered.

2. Main results

For the formulation of the result to be made in this paper, the introduction
of some notation is required. This notation is closely related to the way the
proofs are carried out. Namely, for positive integers 1 < p = p(n) < n and
p — oo, divide the set {1,2,...,n} into successive groups each containing p
elements. Let r = r(n) be the largest integer with:

(2.1) 0<r<mn, r—oo, and 2pr<n,

which implies that n/2pr — 1. Thus, the set {1,2,...,n} is split into 2r groups,
each consisting of p elements; the remaining n — 2pr < p elements constitute a
set which may be empty.

The basic assumption under which the main result in this paper is obtained
is that the random variables X;’s are mean zero LNQD and bounded, i.e.,

X, < M, i> 1.
Define S,, and €, by
1 1
2 flogn\?
r )

— 1< aM?
(2.2) Sn=-> X, enz( 5 )




EXPONENTIAL PROBABILITY INEQUALITY FOR LNQD RVS 139

where M is as in assumption and r is as in (2.1), and « is an arbitrary con-
stant > 1 (see discussion just prior to relation (3.12)). Then the exponential
inequality to be established is the following;:

Theorem 2.1. Let {X;, i > 1} be a sequence of LNQD random variables
which are bounded, i.e., | X;| < M and EX; =0, and let S,, and €, be defined
by (2.2). Then,

(23) P(|§n| 2 En) < 4eXP(—C7"€n2), c= 9_]\2.‘5

for all sufficiently large n, n > ng. Furthermore, S,, — 0 a.s. at the rate 1/e,,.

Finally we introduce an extension of Theorem 2 in Hoeflding [2] to the LNQD
case.

Theorem 2.2. Let {X;, ¢ > 1} be a sequence of LNQD random variables such
that a; < X <b; and EX; =0 for alli > 1. Then, for everyt > 0,

(2.4) P(|S,| > t) < 2exp[—2n2t2/(b; — a;)?].

3. Proof of the main results

Lemma 3.1. Let {X;, 1 <i < n} be a sequence of LNQD random variables.
Then

(3.1) E(ILL, exp(X;)) < I, E(exp X;).

Proof. Since {X;, 1 <1< n}isLNQD, X;and X; 41+ +X,, 1=1,2,...,n—
1, are NQD. Note that exp(X;) and exp(X;+1 + - - + X,,) are also NQD by
Lemma 2 of Matula [7]. Hence,

E(IT7, exp(X;)) = Elexp(X1)exp(Xa + -+ + X,)]
< E(exp X1)E(IT 4 exp(X;))
< I, (Eexp(X;)) by induction.
O

Set S,, = Z?zl X;and S, = S, /m. With p and r as in the previous section,
define the random variables U;, V;, i =1,...,r and W,, by

(3.2) Ui = Xog—1)p+1 + + X2i-1)ps
(3.3) Vi=X@i—1)p+1 + - + Xaip,
(34) W,n = X2p7‘+1 + -+ Xn’
and
1« 1 «
. _‘n:_ qu:_ I/’L'v_nz_na
(3.5) v n Z T p 4 w n
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so that
(3.6) Sn=Un+V,+W,.
We may now formulate the next lemma.

Lemma 3.2. Let U, be defined by (3.5), let €, > 0, and suppose X;'s are
LNQD random variables with EX; =0 and |X;| < M for alli > 1. Then

_ —2re,?
PU,>¢,) < exp( e )

Proof. Note that the random variables Ui, ...,U, are LNQD and |U;| < pM
for all 7. For some A > 0 we have
(3.7) BV < I, (BeX/™U:)
by Lemma 3.1. At this point, we apply Lemma 1 in Devroye [1], which states
that, if EX =0 and a < z < b, then for every A > 0, Eexp(AX) < exp[A\2(b—
a)?/8]. Take X = U;, so that |U;| < pM and b — a = 2pM. Then we obtain

Eexp((\/n)U;) < exp(A\*p>M? /2n?),

and hence
(3.8) szlEe()\/n)Ui < (3,\21\/1219%/2712 < evM""/sT,
pecanse NM2pPr  NM2 (2pr\? _ A M?
2n2p = Tar (%) S g by (2.1).
From (3.7) and (3.8) it follows that
(3.9) Ee?Un < XM /81,
Therefore, for €, > 0
(3.10) P(T, > €,) < e en (WM /8r)
Minimizing, with respect to A, the right-hand side in (3.10), we obtain
(3.11) P(T, > €,) < e 2" IM* for \g = dre, /M.
This completes the proof of the lemma. ]

For the almost sure convergence purpose, we wish to have 2re,,2/M? = log n®
(for any arbitrary a > 1), or equivalently

aM? H log n H
o1 om (220 (10}

For this choice of €,, Ay becomes

8a % 1
(3.13) Ao = (W) (rlog n)=.

Summarizing these observations, we have
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Lemma 3.3. Under assumptions of Theorem 2.1 and with €, specified by
(3.12), it holds

P(Un >e,) < 0T

Remark 3.1. 1t is obvious that Vn, as defined in (3.5) satisfies the same in-
equalities as U, in Lemmas 3.2 and 3.3.

__The following observation is meant to explain that we may dispense with
W, as defined in (3.5).

Lemma 3.4. Under assumptions of Theorem 2.1 and with €, defined by (3.12),
P(W, > ¢€,) =0 for all sufficiently large n.

Proof. W, consists of n — 2pr terms and n — 2pr < p. Then |W,| < pM/n, so
that P(|W,| > €,) < P(M > ne,/p). The last expression, however, is 0, for
all sufficiently large n, because

1 1
nen aM?\? (n?log n\?® wif
T ( 5 ) ( 7 ) = (2aM?)? <-2—I;) (rlog n)

this is so because n/2pr — 1. 0

=

Proof of Theorem 2.1. It consists, essentially, in combining Lemma 3.2, Re-
mark 3.1 and Lemma 3.4. The random variables —X;, ¢ = 1,...,n, have the
same properties as the random variables X;, ¢ =1,...,n. Thus, always

P(U,| > €)= PU, > €,)+ P(~Up > €,)
< 2exp(—2re,?/M?),
and similarly for P(|V,,| > €,). Therefore,
P(ISn| 2 3€x) < P([Un| > &) + P([Va| > &) + P((Wa| 2 €n)
< P(|Un| > €n]) + P([V| > €,) (for every n > ng, say)
< 4exp(—2re,>/M?).
Replacing €, by %, we obtain, finally,

2
oM2’

P([Sn > €]) < dexp(—cre,?), ¢ = n > ng.

O

Remark 3.2. The specification of €, by (3.12), leads to the convergence S, — 0
a.s. at the rate of 1/e,.

Regarding the latter part of the theorem, proceed as follows. For the value
of €, specified in (3.12), the rate of convergence is given by

1 i
1 2 \? r \?
14 — (= .
(3.14) €n (aMQ) <log n)
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Proof of Theorem 2.2. Note that

(3.15) Eexp[AX;] < exp[\*(b; — a:)?/8

by Lemma 3.1 in Devroye [1] and

(3.16) P(S, >t) < exp(—/\nt)EfI exp(AX;)

i=1

by Lemma 3.1. By (3.1), (3.15) and (3.16) we get

P(Sy > 1) < exp(—nt) 2] [exp(AX,)

i=1
(3.17) < exp(—/\nt)HEexp()\Xi)
i=1
< [A—Qi:(b-— )2 = X t]
_exp8i=1,a, nt|.

By minimizing (with respect to \) the right hand side in (3.17), the desired
result (2.4) follows. O
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