References
- S. E. Ahmed, R. G. Antonini, A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes. Statist. Probab. Lett. 58 (2002), 185C194.
- K. Alam, and K. M. L. Saxena, Positive dependence in multivariate distributions. Commun.Statist. Theor. Meth. A10 (1981), 1183-1196.
- J. I.Baek, T. S. Kim, and H. Y. Liang, On the convergence of moving average processes under dependent conditions. Austral. and New Zealand J. Statist. 45(3) (2003), 331-342. https://doi.org/10.1111/1467-842X.00287
- S.Ghosal, T.K . Chandra, Complete convergence of martingale arrays. Jour. Theo. Probab. 11 (1998), no.3, 621-631 https://doi.org/10.1023/A:1022646429754
- A. Gut, Complete convergence for arrays. Period. Math. Hungar. 25 (1992), 51-75. https://doi.org/10.1007/BF02454383
- P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers. Proc. National. Acad. Sci. USA 33 (1947), 25-31. https://doi.org/10.1073/pnas.33.2.25
- T. -C. Hu, D. Li, A. Rosalsky, A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements. Theory Probab. Appl. 47(3) (2001), 455-468. https://doi.org/10.1137/S0040585X97979858
- T. -C. Hu, F. Moricz, R.L. Taylor, A. Rosalsky, Strong laws of large numbers for arrays of rowwisw independent random variables. Statistics Tech. Report 27 17 (1986),University of Georgia .
- T. -C. Hu, A. Rosalsky, D. Szynal, A. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces. Stochastic Anal. Appl. 17 (1999), 963-992. https://doi.org/10.1080/07362999908809645
- K. Joag-Dev, and F. Proschan, Negative association of random variables with applications. Ann. Statist. 11 (1983), 86-295. https://doi.org/10.1214/aos/1176346059
- S. Karlin, Y. Rinott, Classes of ordering measures and related correlation inequalities. II. Multivariate reverse rule distributions. Journal of Multivariate Analy. 10 (1980 b), 499-516. https://doi.org/10.1016/0047-259X(80)90066-4
- A. Kuczmaszewska, D. Szynal, On complete convergence in a Banach space. Internat. J. Math. Math. Sci. 17 (1994), 1-14. https://doi.org/10.1155/S0161171294000013
- D. Li, M.B. Rao, and X. C. Wang, Complete convergence of moving average processes.Statist.& Probab. Lett. 14 (1992), 111-114. https://doi.org/10.1016/0167-7152(92)90073-E
- H. Y. Liang, Complete convergence for weighted sums of negatively associated random variables. Statist.&Probab.Lett. 48 (2000), 317-325. https://doi.org/10.1016/S0167-7152(00)00002-X
- P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett. 15 (1992), 209-213. https://doi.org/10.1016/0167-7152(92)90191-7
- W. E. Pruitt, Summability of independence of random variables. J. Math. Mech 15 (1966), 769-776.
- V. K. Rohatgi, Convergence of weighted sums of independence . of random variables. Proc. cambridge Philos. Soc.Math. 69 (1971), 305-307. https://doi.org/10.1017/S0305004100046685
- G. G. Roussas, Asymptotic normality of random fields of positively or negatively associated processes. J. Multiv. Analysis 50 (1994), 152-173. https://doi.org/10.1006/jmva.1994.1039
- Q. M. Shao, and C. Su, The law of the iterated logarithm for negatively associated random variables. Stochastic Process Appl. 83 (1999), 139-148. https://doi.org/10.1016/S0304-4149(99)00026-5
- Q. M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab. 13 (2000), 343-356. https://doi.org/10.1023/A:1007849609234
- C. Su, Y. S. Qin, Limit theorems for negatively associated sequences. Chinese Science Bulletin 42(1997), 243-246. https://doi.org/10.1007/BF02882446
- C. Su, L. C. Zhao, and Y. B. Wang, Moment inequalities and weak convergence for negatively associated sequences. Science in China (Series A) 40 (1997), 172-182. https://doi.org/10.1007/BF02874436
- X. Wang, M. B. Rao, X. Yang, Convergence rates on strong laws of large numbers for arrays of rowwise independent elements. Stochastic Anal. Appl. 11 (1993), 115-132. https://doi.org/10.1080/07362999308809305