COMPLETE CONVERGENCE FOR ARRAY OF ROWWISE DEPENDENT RANDOM VARIABLES

  • Baek, Jong-Il (Division of Mathematics and Informational Statistics, and Institute of Basic Natural Science, Wonkwang University) ;
  • Park, Sung-Tae (Division of Business, Business and Economic Research Institute, Wonkwang University)
  • Published : 2009.05.31

Abstract

Let {$X_{ni}|1\;{\le}\;i\;{\le}\;n$, $n\;{\ge}\;1$} be an array of rowwise negatively associated random variables and let $\alpha$ > 1/2, 0 < p < 2 ${\alpha}p\;{\ge}\;1$. In this paper we discuss $n^{{\alpha}p-2}h(n)$ max $_{1\;{\le}\;k{\le}n}\;|\;{\sum}^k_{i=1}\;X_{ni}|/n^{\alpha}\;{\to}\;0$ completely as $n\;{\to}\;{\infty}$ under not necessarily identically distributed with a suitable conditions and h(x) > 0 is a slowly varying function as $x\;{\to}\;{\infty}$. In addition, we obtained that $n^{{\alpha}p-2}h(n)$ max $_{1\;{\le}\;k{\le}n}\;|\;{\sum}^k_{i=1}\;X_{ni}|/n^{\alpha}\;{\to}\;0$ completely as $n\;{\to}\;{\infty}$ if and only if $E|X_{11}|^ph(|X_{11}|^{1/\alpha})\;<\;{\infty}$ and $EX_{11}\;=\;0$ under identically distributed case and some corollaries are obtained.

Keywords

References

  1. S. E. Ahmed, R. G. Antonini, A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes. Statist. Probab. Lett. 58 (2002), 185C194.
  2. K. Alam, and K. M. L. Saxena, Positive dependence in multivariate distributions. Commun.Statist. Theor. Meth. A10 (1981), 1183-1196.
  3. J. I.Baek, T. S. Kim, and H. Y. Liang, On the convergence of moving average processes under dependent conditions. Austral. and New Zealand J. Statist. 45(3) (2003), 331-342. https://doi.org/10.1111/1467-842X.00287
  4. S.Ghosal, T.K . Chandra, Complete convergence of martingale arrays. Jour. Theo. Probab. 11 (1998), no.3, 621-631 https://doi.org/10.1023/A:1022646429754
  5. A. Gut, Complete convergence for arrays. Period. Math. Hungar. 25 (1992), 51-75. https://doi.org/10.1007/BF02454383
  6. P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers. Proc. National. Acad. Sci. USA 33 (1947), 25-31. https://doi.org/10.1073/pnas.33.2.25
  7. T. -C. Hu, D. Li, A. Rosalsky, A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements. Theory Probab. Appl. 47(3) (2001), 455-468. https://doi.org/10.1137/S0040585X97979858
  8. T. -C. Hu, F. Moricz, R.L. Taylor, A. Rosalsky, Strong laws of large numbers for arrays of rowwisw independent random variables. Statistics Tech. Report 27 17 (1986),University of Georgia .
  9. T. -C. Hu, A. Rosalsky, D. Szynal, A. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces. Stochastic Anal. Appl. 17 (1999), 963-992. https://doi.org/10.1080/07362999908809645
  10. K. Joag-Dev, and F. Proschan, Negative association of random variables with applications. Ann. Statist. 11 (1983), 86-295. https://doi.org/10.1214/aos/1176346059
  11. S. Karlin, Y. Rinott, Classes of ordering measures and related correlation inequalities. II. Multivariate reverse rule distributions. Journal of Multivariate Analy. 10 (1980 b), 499-516. https://doi.org/10.1016/0047-259X(80)90066-4
  12. A. Kuczmaszewska, D. Szynal, On complete convergence in a Banach space. Internat. J. Math. Math. Sci. 17 (1994), 1-14. https://doi.org/10.1155/S0161171294000013
  13. D. Li, M.B. Rao, and X. C. Wang, Complete convergence of moving average processes.Statist.& Probab. Lett. 14 (1992), 111-114. https://doi.org/10.1016/0167-7152(92)90073-E
  14. H. Y. Liang, Complete convergence for weighted sums of negatively associated random variables. Statist.&Probab.Lett. 48 (2000), 317-325. https://doi.org/10.1016/S0167-7152(00)00002-X
  15. P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett. 15 (1992), 209-213. https://doi.org/10.1016/0167-7152(92)90191-7
  16. W. E. Pruitt, Summability of independence of random variables. J. Math. Mech 15 (1966), 769-776.
  17. V. K. Rohatgi, Convergence of weighted sums of independence . of random variables. Proc. cambridge Philos. Soc.Math. 69 (1971), 305-307. https://doi.org/10.1017/S0305004100046685
  18. G. G. Roussas, Asymptotic normality of random fields of positively or negatively associated processes. J. Multiv. Analysis 50 (1994), 152-173. https://doi.org/10.1006/jmva.1994.1039
  19. Q. M. Shao, and C. Su, The law of the iterated logarithm for negatively associated random variables. Stochastic Process Appl. 83 (1999), 139-148. https://doi.org/10.1016/S0304-4149(99)00026-5
  20. Q. M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab. 13 (2000), 343-356. https://doi.org/10.1023/A:1007849609234
  21. C. Su, Y. S. Qin, Limit theorems for negatively associated sequences. Chinese Science Bulletin 42(1997), 243-246. https://doi.org/10.1007/BF02882446
  22. C. Su, L. C. Zhao, and Y. B. Wang, Moment inequalities and weak convergence for negatively associated sequences. Science in China (Series A) 40 (1997), 172-182. https://doi.org/10.1007/BF02874436
  23. X. Wang, M. B. Rao, X. Yang, Convergence rates on strong laws of large numbers for arrays of rowwise independent elements. Stochastic Anal. Appl. 11 (1993), 115-132. https://doi.org/10.1080/07362999308809305