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Abstract

In this paper we prove the complete convergence for weighted sums of pairwise negatively quadrant depen-
dent random variables. Some results on identically distributed and negatively associated setting of Liang and Su
(1999) are generalized and extended to the pairwise negative quadrant dependence case.
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1. Introduction

Lehmann (1966) introduced the concept of negative quadrant dependence as follows: Two random
variables X and Y are said to be negatively quadrant dependent(NQD) if

PX <x,Y<y)<PX<x)P(Y <y), (L.1)

for all real numbers x and y. A collection of random variables is said to be pairwise NQD if every pair
of random variables in the collection satisfies (1.1). It is important to note that (1.1) implies

PX>x,Y>y)< P(X>x)P(Y > ) (1.2)

for all real numbers x and y. Moreover, it follows that (1.2) implies (1.1), and hence, (1.1) and (1.2)
are equivalent.

Consider a special case of the F-G-M system where both marginals are exponentials. The joint
distribution function is then of the form,

Fxy) = (1-e")(1=e)(1+pe" ), —1<p<1, 21,0 >0

(see Johnson and Kotz, 1972, pp. 262-263). It is obvious that X and Y are negatively quadrant depen-
dentif p < 0.

The F-G-M bivariate distribution has been studied extensively. It has several applications in vari-
ous contexts, for example, in competing risk problems (Tolley and Norman, 1979).

In 1983, Joag-Dev and Proschan introduced another concept of negative dependence: A finite
family {X;, 1 <i < n} of random variables is said to be negatively associated(NA) if for every disjoint
subsets A, B C {1,2,...,n} and for any increasing functions f and g Cov(f(X;,i € A),g(X;, j € B)) <
0.
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These concepts of dependent random variables have been very useful in reliability theory and
applications (Barlow and Proschan, 1975).

Obviously, NA implies pairwise NQD from the definition of NA and pairwise NQD. But pairwise
NQD does not imply NA, so pairwise NQD is much weaker than NA. Hence, extending the limit
properties of independent or NA random variables to the case of pairwise NQD variables is highly
desirable and considerably significant in theory and application.

Let {X,,n > 1} be a sequence of random variables and {a,;,i > 1,1 < i < n} be an array of
real numbers. The weighted sums )., a,,;X; can play an important role in various applied and the-
oretical problems, such as those of the least square estimators (Kafles and Bhaskara Rao, 1982) and
M-estimates (Rao and Zhao, 1992) in linear models, the nonparametric regression estimators (Cheng,
1995). Therefore, a So the study of the limiting behavior of the weighted sums is very important and
significant.

Hsu and Robbins (1947) introduced the concept of the complete convergence of {X,,,n > 1} as

follows: A sequence {X,,n > 1} of random variables is said to converge completely to a constant c if

ZP”X” —c|> €} <0, foralle>D0.

n=1
There have been many investigations in the complete convergences: For examples, Bai and Su (1985)
proved the complete convergence of partial sums of i.i.d. random variables, Gut (1992, 1993) investi-
gated the complete convergence of arrays of i.i.d. random variables, Li et al. (1995) studied complete
convergence and almost sure convergence of weighted sums of independent random variables, Liang
and Su (1999) and Liang (2000) obtained complete convergence of weighted sums of negatively as-
sociated sequence, Kuczmaszewska (2009) showed the complete convergence for arrays of rowwise
negatively associated random variables.

Liang and Su (1999) proved that for identically distributed NA random variables {X,,n > 1},

under some restrictions on weights {a,;, | < i < n,n > 1} there exists the equivalence between the
convergence of series

k

:E: anijg

(o)
Z 7" 2P { max
1<k<n

n=1

>6né}, Ye>0

and the existence of moment E(|X[2¢~D log|X]), for correctly chosen p and r (Liang and Su, 1999,
Theorem 2.1 (I)).

Moreover, they considered sequences without identical distribution and proved the following re-
sult.

Theorem 1. (Liang and Su, 1999, Theorem 2.2) Let {X,,n > 1} be a sequence of zero mean
NA random variables, and let {a,;,1 < i < n,n > 1} be an array of real numbers satisfying the
conditions Y"_ a?, = On®) as n — oo and |a,| = O(1), 1 <i<n, n>1forsome0<8<2/p, p>

n=1 “ni
1
> €enr p < 00,

2. If B = Y1 EIXil? < o0, then Ye > 0,
Z n'p {max
= 1<k<n
In this paper we investigate the complete convergence for weighted sums of sequences of pairwise
NQD random variables and extend Theorem 2.1(I) in Liang and Su (1999) to the pairwise NQD case
without extra conditions and show that Theorem 1 still holds under the pairwise NQD assumption
with restriction p = 2.

k

Z aniX;

i=1
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2. Some Lemmas
We introduce a few lemmas needed in the further part of this paper.

Lemma 1. (Lehmann, 1966) Let {X,,n > 1} be a sequence of pairwise NOD random variables
and {fy,n > 1} be a sequence of Borel functions, all of which are monotone increasing(decreasing).
Then {f,(X,),n > 1} is still a sequence of pairwise NOD random variables.

Lemma 2. (Wu, 2006) Let {X,,n > 1} be a sequence of pairwise NQD random variables with
EX, =0and EX? < oo foralln > 1. Then

n 2 n
E[Z X,-] < ZEX2 Q2.1
i=1

i=1

k 2 n
E [max Z X,-] < (log, n)? Z EX?. 2.2)
i=1

1<k<n
i=1

From Lemma 1 and Lemma 2 we obtain the following lemma.

Lemma 3. Let {X,,,n > 1} be a sequence of pairwise NOD random variables. Then for any x > 0
and foralln > 1,

2 n
(l — P(max | Xk > x)) E P(X;| > x) < 2P(max | Xy > x). 2.3)
1<k<n

1<k<n
k=1

Proof: Let Ay = {|X}| > x} and

1<k<n

an =1 —P(OAk]:l—P(max X ] >x). (2.4)
k=1

Without loss of generality, we assume that @, > 0. Note that {/[X; > x] — EI[X; > x],k > 1} and
{I[ X < —x] — EI[X} < —x],k > 1} are still sequences of pairwise NQD random variables by Lemma
1. Hence, we get

n 2 n n 2
E[Z(lAk - EIAk)) - E(Z(I[Xk > x] - EI[X; > x]) + Z(I[Xk < —x] - EI[X; < —x])] 2.5)
k=1

k=1 k=1

n 2 n 2
<2E [Z(I[Xk > x] - EI[X; > x])] +2F [Z (I[X; < —x] — EI[X; < —x])]

k=1 k=1

< 2ZE(I[Xk >x] — EI[X;>x])* + 2EZ(1[Xk <—x] - EI[X;<—x])* by (2.1)
k=1 k=1

<2 ; EU[X; > x])? + ; EU[X; < —x])2

Z;P(Xk > x)+ ;P(Xk <-x)

=2 Z P(Ap).
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By Cauchy-Schwarz inequality, (2.4) and (2.5) we obtain

n n

2 PA0 = 2 P(An (Una))) = QL E (Iaduy a)
k=1

k=1 k=1

- E Z (In, = EIy) Ion_a, + Z P(A)P (UL,4A;)
k=1 k=1

n 2 % n
< [E (Z (I, — EzAk)) E (Iuy_,A,.)z] +(1=a,) ) P(AY)
k=1 k=1

< (2(1 —a) ) P(Ak)] +(1-a,) ) P(AY)
k=1 k=1

1(2(1 - ) i Y
<3 [Cl—n +an;P(Ak)J +(1 —an);P(Ak)

which yields
ay ) P(A) < 2(1 - ay).
k=1

Hence, by (2.4) and (2.6) we get (2.3).

3. Main Results

Mi-Hwa Ko

(2.6)

In the following, let a,, < b,, denote that there exists a constant ¢ > 0 such that a,, < c¢b,, for sufficiently

large n, a, ~ b, mean a, < b, and a, > b, and S, = Z’;zl X;.

Theorem 2. Let {X, X,,,n > 1} be a sequence of identically distributed pairwise NQD random vari-

ables, {au, 1 <k < n,n > 1} be an array of real numbers and let r > 1. If
NGm+1) = Bk laul 2 m+ D2 xm™, nm>1,
EX =0,

and for 1 <2(r—1),

Z |a11k|2(r71) = 0(1), as n — oo,

k=1
Then,

E(IX"Vlog X]) < oo

if and only if
k

Z aniXi
1

i=

(o]
Z 2P| max
I1<k<n

n=1

1
>6n2]<00, Ye>0.

3.1)
(3.2)

(3.3)

34

(3.5)
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Proof: (3.4) = (3.5) Without loss of generality, we can assume that a,; > Oforall 1 <i<n,n> 1.

For 0 < @ < 1/2 small enough let

)
Xy = =1l i<y + @niXillaupxicon) + 1 Hayxsm,

X? = (@uX; — n™) 1,

ni

L 9
n¥<a,; X;<en? /SJ

X = (@uX; +n") 1 :

1
—en? [8<ay Xi<—n®

X9 = (auX; + n) 1,

ni

+ (am-X,- - I’l(l)ll

1
ayXi<en? /8J

and

k
SW=YXD, j=1234 1<k<nnz1
i=1

Obviously, S, = X1, S Note that

1 4 V)
(max IS k| > en2) cU, (max Snjk)

1<k<n 1<k<n

<)
411 .

So, to prove (3.5) it suffices to show that

(o)
I = Z n”zP(max
’ 1<k<n

n=1

@)
S nk

4
First we prove that

_1 1
n 2 max |ES(k)| — 0, as n— oo,
1<k<n n

For 1 < 2(r — 1) by (3.3) and (3.4) we obtain

(ElaiziXi|I[|a,,iX;|>n"] + naP(laniXi| > na))
1

n
-3 M < 53
n 2max|ES kign 2

1<k<n n —

1

n(l

20-1)-1
RS lan Xil ™" a=2a(r-1) 2r-1)
<n’2 E Ela, X;| Taxijsne + 11 Ela, X;|

i=1

IA

n
1
n—i+(l—2w(r—l)E|Xi|2(r—1) Z |am'|2(r_l)
i=1
1

<n2 +a—2a(r-1)

Hence (3.7) holds. Therefore, to prove I; < oo it is enough to show that

I = Zn’_zP(max |Sfllk) - ES;Q' > gn%) <oo, Ye>O0.
n=1

1<k<n

1 ’
a,i Xi>en2 /SJ

> fn%)< o, j=1,2,3,4.

1
— 0, as n — oo since —§+a—2a(r—l)<0.

(3.6)

3.7)

(3.8)
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Note that {X,(l}), 1 <i < n,n > 1} is still pairwise NQD by definition of Xl(;) and Lemma 2. Using
Chebyshev’s inequality and Lemma 1, we get

I < Z nE (max |S$() - ES’(JC)D2
n=1

1<k<n

< Z "3 (log, n)? (Z (Xf,l’)z)

n=1 i=1

< Z n"(log, n)’ Z (E@nX g, xi<nm) + 1 PaniXil > n))

n=1 i=1

(o) n
< Z n’*3(log2 n)z Z (ElaiXilz(’*l)na(zfz(’*l)) " na(272(r71))Elanixi|2(r71)) (3.9)
n=1 i=1

n
nr—3+20/—2<y(r—1)(10g2 n)2 Z Ianilz('_l)EIXlz(r_])

M

b
1l
—_

nr—3+2a—2a/(r—1)(10g2 l’l)2

A
[

n

< 00,

Since, by the definition of ij) .S ﬁ) > 0 and
2 1 (2)
(IIE%JS |> “ni ) (Zx > nZ] (3.10)

— . 4 — @ E l
= [Zl(amxl n )I[nw<amX,-<€n%/8] > 4.’12
i=

C {there exists at least 2 indices k such that a,; X, > n“},

we have
n
> 1
P(ZX( ) > 4n2] < Z P(an, X, > n®, an, Xi, > n®).
i=1 1<ii<ir<n

By Lemma 1 {a,;X;, 1 <i < n,n > 1} is still a sequence of pairwise NQD random variables. Hence,
we conclude that

P(max [s 5] > $nt) = P( x> gn%) 3.11)
i=1

2
Z I—[ P(am-/Xij > n")

1<ii<ir<n j=1

" 2
< [Z P (la,: X;| > na)]

i=1
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2
n
< (Z nza(rl)E|aniXi|2(rl)J

i=1

< n—4(y(r—1),

by (3.3) and (3.4). Note that X'?’ > 0 by the definition of X”. Since r -2 — 4a(r — 1) < —1 it follows
from (3.11) that

Sr{S o)
n=1

< Z pr2det=l) oo

n=1

Similarly, we have XS) <0and 5 < oo.
It remains to prove that I < co. Let Y = 8X/e. By the definition of Xﬁ) and (3.1) we have

P (max S(4) 5

1<k<n

=> Z P(IY1> (nj)?)

J=l (D <a? <!

Z(N(n JHD=Na ) P(I<YP <i+1)
1

-

00

(1
~ (;) P(I<|YP <1+1),

n

which yields

r—1
) l<|Y|2<l+1)

S|~

|

I=n

2
M8

b
1l

1
N e '+1P(1 <|YP<I+ 1)

n=1

2
[1e

~
1]

2
M8

I oglP(I<|YP <1+1)

mr
—_—~ =

XD log|X]) < co, by (3.4).
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Now we prove (3.5) = (3.4). Obviously (3.5) implies
Zn’-zp(g% lan X > ni) < o0, (3.12)
which yields
P(lrr<1a<x |lan; X;| > nZ) -0, asn—-o
by the hypotheses of Theorem 2. Hence, for sufficiently large n,

1
P(max lan; Xl > né) < —.
1<j<n 2

By Lemma 1 {a,;X;,1 < j < n,n > 1} is still a sequence of pairwise NQD random variables. By
Lemma 3 and (3.1) we obtain

n

3 P(lauXil > nt) < SP(max lanXe] > n) (3.13)
k=1

From (3.12) and (3.13) it follows that

in Z |auXil > n?) < . (3.14)

n=

So, by the process of proof of 14 < oo from (3.14) we obtain

E(XF D og ) = Do ZZ @ Xl > n)
1 k=1

=
[ee)

Z (max |au Xi| > nz)
n=1

< 00,

I/\

Hence, the proof of Theorem 2 is complete. (|

Remark 1. Theorem 2 shows that for identically distributed pairwise NQD random variables the
equivalence between complete convergence of series (3.5) and the existence of moment (3.4).

Moreover, we consider the sequence without identical distribution restriction and prove the fol-
lowing result.

Theorem 3. Let {X,,,n > 1} be a sequence of zero mean pairwise NOQD random variables and let
{an, 1 < k <n,n > 1} be an array of real numbers satisfying the conditions, for some 0 < 6 < 1

a2, =0, as n— oo |ayl=0(1),1<k<nn>1. (3.15)
k=1
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If

sup EX? < oo, (3.16)
k>1

then
k

1
>en2]<00, Ye>0.

Proof: Without loss of generality we assume that a,; > 0. By Lemma 1, (3.15), (3.16) and Cheby-
shev’s inequality we obtain

k

de'Xi
<n |

i=

(&) n

3 1 2 2 py2
> enZ] < Z ;(logz n) Zam-EXi

n=1 i=1

< Z n~ 9 (log, n)* < oo.

n=1

From Lemma 3 we obtain the following result. O

Corollary 1. Let {X,,,n > 1} be a sequence of pairwise NOD random variables and let {a,, 1 < k <
n,n > 1} be an array of real numbers. Assume that for 6 > 0 small enough,

1
P|max |a,;X;| > en2]) <96, VYVe>0
1<j<n

for sufficiently large n. Then

n
1 1
ZP(laanjl > enZ) < P({r<1jc1<x |ani Xi| > Enz), Ve>0
<isn
J=1

for sufficiently large n.

Remark 2.

1. Theorem 2 is an extension of Theorem 2.1(I) of Liang and Su (1999) to the case of pairwise NQD
random variables without extra conditions.

2. Theorem 3 and Corollary 1 show that Theorem 2.2 and Corollary 3.1 of Liang and Su (1999) still
hold under the pairwise NQD assumption with restriction p = 2, respectively.

3. Asan application, we can prove the complete convergence of linear processes under pairwise NQD
assumption by Theorem 2.



256 Mi-Hwa Ko

References

Bai, Z. and Su, C. (1985). The complete convergence for partial sums of i.i.d. random variables,
Science China Mathematics, A28, 1261-1277

Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing Probability
Models, Holt, Rinehart and Winston, New York.

Cheng, P. E. (1995). A note on strong convergence rates in nonparametric regression, Statistics and
Probability Letters, 24, 357-364.

Gut, A. (1992). Complete convergence for arrays, Periodica Mathematica Hungarica, 25, 51-75.

Gut, A. (1993). Complete convergence and Cesaro summation for i.i.d. random variables, Probability
Theory and Related Fields, 97, 169-178.

Hsu, P. L. and Robbins, H. (1947). Complete convergence and the law of large numbers, Proceedings
of the National Academy of Sciences of the United States of America, 33, 25-31.

Joag-Dev, K. and Proschan, F. (1983). Negative association of random variables with applications,
Annals of Statistics, 11, 286-295.

Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions,
Wiley, New York.

Kafles, D. and Bhaskara Rao, M. (1982). Weak consistency of least squares estimators in linear
models, Journal of Multivariate Analysis, 12, 186—198.

Kuczmaszewska, A. (2009). On complete convergence for arrays of rowwise negatively associated
random variables, Statistics and Probability Letters, 79, 116—124.

Lehmann, E. L. (1966). Some concepts of dependence, Annals of Mathematical Statistics, 37, 1137-
1153.

Li, D. L., Rao, M. B., Jiang, T. F. and Wang, X. C. (1995). Complete convergence and almost sure
convergence of weighted sums of random variables, Journal of Theoretical Probability, 8, 49-76.

Liang, H. Y. (2000). Complete convergence for weighted sums of negatively associated random vari-
ables, Statistics and Probability Letters, 48, 317-325.

Liang, H. Y. and Su, C. (1999). Complete convergence for weighted sums of NA sequences, Statistics
and Probability Letters, 45, 85-95.

Rao, C. R. and Zhao, M. T. (1992). Linear representation of M-estimates in linear models, Canadian
Journal of Statistics, 20, 359-368.

Tolley, H. D. and Norman, J. E. (1979). Time on trial estimates with bivariate risk, Biometrika, 66,
285-291.

Wu, Q. (2006). Probability Limit Theory for Mixing Sequences, Science Press, Beijing, China, 170-
176, 206-211.

Received December 12, 2011; Revised January 8, 2012; Accepted January 31, 2012



