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Abstract
In this paper we prove the complete convergence for weighted sums of pairwise negatively quadrant depen-

dent random variables. Some results on identically distributed and negatively associated setting of Liang and Su
(1999) are generalized and extended to the pairwise negative quadrant dependence case.
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1. Introduction

Lehmann (1966) introduced the concept of negative quadrant dependence as follows: Two random
variables X and Y are said to be negatively quadrant dependent(NQD) if

P(X ≤ x,Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y), (1.1)

for all real numbers x and y. A collection of random variables is said to be pairwise NQD if every pair
of random variables in the collection satisfies (1.1). It is important to note that (1.1) implies

P(X > x,Y > y) ≤ P(X > x)P(Y > y) (1.2)

for all real numbers x and y. Moreover, it follows that (1.2) implies (1.1), and hence, (1.1) and (1.2)
are equivalent.

Consider a special case of the F-G-M system where both marginals are exponentials. The joint
distribution function is then of the form,

F(x, y) =
(
1 − eλ1 x

) (
1 − eλ2y

) (
1 + ρeλ1 x−λ2y

)
, −1 ≤ ρ ≤ 1, λ1, λ2 > 0

(see Johnson and Kotz, 1972, pp. 262–263). It is obvious that X and Y are negatively quadrant depen-
dent if ρ ≤ 0.

The F-G-M bivariate distribution has been studied extensively. It has several applications in vari-
ous contexts, for example, in competing risk problems (Tolley and Norman, 1979).

In 1983, Joag-Dev and Proschan introduced another concept of negative dependence: A finite
family {Xi, 1 ≤ i ≤ n} of random variables is said to be negatively associated(NA) if for every disjoint
subsets A, B ⊂ {1, 2, . . . , n} and for any increasing functions f and g Cov( f (Xi, i ∈ A), g(X j, j ∈ B)) ≤
0.
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These concepts of dependent random variables have been very useful in reliability theory and
applications (Barlow and Proschan, 1975).

Obviously, NA implies pairwise NQD from the definition of NA and pairwise NQD. But pairwise
NQD does not imply NA, so pairwise NQD is much weaker than NA. Hence, extending the limit
properties of independent or NA random variables to the case of pairwise NQD variables is highly
desirable and considerably significant in theory and application.

Let {Xn, n ≥ 1} be a sequence of random variables and {ani, i ≥ 1, 1 ≤ i ≤ n} be an array of
real numbers. The weighted sums

∑n
i=1 aniXi can play an important role in various applied and the-

oretical problems, such as those of the least square estimators (Kafles and Bhaskara Rao, 1982) and
M-estimates (Rao and Zhao, 1992) in linear models, the nonparametric regression estimators (Cheng,
1995). Therefore, a So the study of the limiting behavior of the weighted sums is very important and
significant.

Hsu and Robbins (1947) introduced the concept of the complete convergence of {Xn, n ≥ 1} as
follows: A sequence {Xn, n ≥ 1} of random variables is said to converge completely to a constant c if

∞∑
n=1

P{|Xn − c| ≥ ϵ} < ∞, for all ϵ > 0.

There have been many investigations in the complete convergences: For examples, Bai and Su (1985)
proved the complete convergence of partial sums of i.i.d. random variables, Gut (1992, 1993) investi-
gated the complete convergence of arrays of i.i.d. random variables, Li et al. (1995) studied complete
convergence and almost sure convergence of weighted sums of independent random variables, Liang
and Su (1999) and Liang (2000) obtained complete convergence of weighted sums of negatively as-
sociated sequence, Kuczmaszewska (2009) showed the complete convergence for arrays of rowwise
negatively associated random variables.

Liang and Su (1999) proved that for identically distributed NA random variables {Xn, n ≥ 1},
under some restrictions on weights {ani, 1 ≤ i ≤ n, n ≥ 1} there exists the equivalence between the
convergence of series

∞∑
n=1

nr−2P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > ϵn 1
2

 , ∀ ϵ > 0

and the existence of moment E(|X|2(r−1) log |X|), for correctly chosen p and r (Liang and Su, 1999,
Theorem 2.1 (I)).

Moreover, they considered sequences without identical distribution and proved the following re-
sult.

Theorem 1. (Liang and Su, 1999, Theorem 2.2) Let {Xn, n ≥ 1} be a sequence of zero mean
NA random variables, and let {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of real numbers satisfying the
conditions

∑n
n=1 a2

ni = O(nδ) as n → ∞ and |ani| = O(1), 1 ≤ i ≤ n, n ≥ 1 for some 0 < δ < 2/p, p ≥
2. If β =

∑
k≥1 E|Xk |p < ∞, then ∀ϵ > 0,

∞∑
n=1

n−1P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > ϵn 1
p

 < ∞.
In this paper we investigate the complete convergence for weighted sums of sequences of pairwise

NQD random variables and extend Theorem 2.1(I) in Liang and Su (1999) to the pairwise NQD case
without extra conditions and show that Theorem 1 still holds under the pairwise NQD assumption
with restriction p = 2.
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2. Some Lemmas

We introduce a few lemmas needed in the further part of this paper.

Lemma 1. (Lehmann, 1966) Let {Xn, n ≥ 1} be a sequence of pairwise NQD random variables
and { fn, n ≥ 1} be a sequence of Borel functions, all of which are monotone increasing(decreasing).
Then { fn(Xn), n ≥ 1} is still a sequence of pairwise NQD random variables.

Lemma 2. (Wu, 2006) Let {Xn, n ≥ 1} be a sequence of pairwise NQD random variables with
EXn = 0 and EX2

n < ∞ for all n ≥ 1. Then

E

 n∑
i=1

Xi

2

≤
n∑

i=1

EX2
i , (2.1)

E

max
1≤k≤n

k∑
i=1

Xi


2

≤ (log2 n)2
n∑

i=1

EX2
i . (2.2)

From Lemma 1 and Lemma 2 we obtain the following lemma.

Lemma 3. Let {Xn, n ≥ 1} be a sequence of pairwise NQD random variables. Then for any x ≥ 0
and for all n ≥ 1, (

1 − P
(
max
1≤k≤n

|Xk | > x
))2 n∑

k=1

P(|Xk | > x) ≤ 2P
(
max
1≤k≤n

|Xk | > x
)
. (2.3)

Proof: Let Ak = {|Xk | > x} and

αn = 1 − P

 n∪
k=1

Ak

 = 1 − P
(
max
1≤k≤n

|Xk | > x
)
. (2.4)

Without loss of generality, we assume that αn > 0. Note that {I[Xk > x] − EI[Xk > x], k ≥ 1} and
{I[Xk < −x] − EI[Xk < −x], k ≥ 1} are still sequences of pairwise NQD random variables by Lemma
1. Hence, we get

E

 n∑
k=1

(IAk − EIAk )

2

= E

 n∑
k=1

(I[Xk > x] − EI[Xk > x]) +
n∑

k=1

(I[Xk < −x] − EI[Xk < −x])

2

(2.5)

≤ 2E

 n∑
k=1

(I[Xk > x] − EI[Xk > x])

2

+ 2E

 n∑
k=1

(I[Xk < −x] − EI[Xk < −x])

2

≤ 2
n∑

k=1

E(I[Xk> x] − EI[Xk> x])2 + 2E
n∑

k=1

(I[Xk<−x] − EI[Xk<−x])2 by (2.1)

≤ 2
n∑

k=1

E(I[Xk > x])2 +

n∑
k=1

E(I[Xk < −x])2

= 2
n∑

k=1

P(Xk > x) +
n∑

k=1

P(Xk < −x)

= 2
n∑

k=1

P(Ak).
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By Cauchy-Schwarz inequality, (2.4) and (2.5) we obtain

n∑
k=1

P(Ak) =
n∑

k=1

P
(
Ak ∩

(
∪n

j=1A j

))
=

n∑
k=1

E
(
IAk I∪n

j=1A j

)
= E

n∑
k=1

(
IAk − EIAk

)
I∪n

j=1A j +

n∑
k=1

P(Ak)P
(
∪n

j=1A j

)

≤
E

 n∑
k=1

(
IAk − EIAk

)2

E
(
I∪n

j=1A j

)2


1
2

+ (1 − αn)
n∑

k=1

P(Ak)

≤
2(1 − αn)

n∑
k=1

P(Ak)


1
2

+ (1 − αn)
n∑

k=1

P(Ak)

≤ 1
2

2(1 − αn)
αn

+ αn

n∑
k=1

P(Ak)

 + (1 − αn)
n∑

k=1

P(Ak)

which yields

α2
n

n∑
k=1

P(Ak) ≤ 2(1 − αn). (2.6)

Hence, by (2.4) and (2.6) we get (2.3). �

3. Main Results

In the following, let an ≪ bn denote that there exists a constant c > 0 such that an ≤ cbn for sufficiently
large n, an ≈ bn mean an ≪ bn and an ≫ bn and S n =

∑n
j=1 X j.

Theorem 2. Let {X, Xn, n ≥ 1} be a sequence of identically distributed pairwise NQD random vari-
ables, {ank, 1 ≤ k ≤ n, n ≥ 1} be an array of real numbers and let r > 1. If

N(n,m + 1) = ♯
{
k, |ank | ≥ (m + 1)−

1
2

}
≈ mr−1, n,m ≥ 1, (3.1)

EX = 0, (3.2)

and for 1 ≤ 2(r − 1),

n∑
k=1

|ank |2(r−1) = O(1), as n→ ∞. (3.3)

Then,

E
(
|X|2(r−1) log |X|

)
< ∞ (3.4)

if and only if

∞∑
n=1

nr−2P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > ϵn 1
2

 < ∞, ∀ ϵ > 0. (3.5)
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Proof: (3.4)⇒ (3.5) Without loss of generality, we can assume that ani > 0 for all 1 ≤ i ≤ n, n ≥ 1.
For 0 < α < 1/2 small enough let

X(1)
ni = −nαI[aniXi<−nα] + aniXiI[ani |Xi |≤nα] + nαI[aniXi>nα],

X(2)
ni = (aniXi − nα) I[

nα<aniXi<ϵn
1
2 /8

],
X(3)

ni = (aniXi + nα) I[
−ϵn

1
2 /8<aniXi<−nα

],
X(4)

ni = (aniXi + nα) I[
aniXi<ϵn

1
2 /8

] + (aniXi − nα)I[
aniXi>ϵn

1
2 /8

],
and

S ( j)
nk =

k∑
i=1

X( j)
ni , j = 1, 2, 3, 4; 1 ≤ k ≤ n, n ≥ 1.

Obviously, S nk =
∑4

j=1 S ( j)
nk . Note that(

max
1≤k≤n

|S nk | > ϵn
1
2

)
⊆ ∪4

j=1

(
max
1≤k≤n

∣∣∣∣S ( j)
nk

∣∣∣∣ > ϵ4n
1
2

)
.

So, to prove (3.5) it suffices to show that

I j =

∞∑
n=1

nr−2P
(
max
1≤k≤n

∣∣∣∣S ( j)
nk

∣∣∣∣ > ϵ4n
1
2

)
< ∞, j = 1, 2, 3, 4. (3.6)

First we prove that

n−
1
2 max

1≤k≤n

∣∣∣ES (1)
nk

∣∣∣→ 0, as n→ ∞. (3.7)

For 1 ≤ 2(r − 1) by (3.3) and (3.4) we obtain

n−
1
2 max

1≤k≤n

∣∣∣ES (1)
nk

∣∣∣ ≤ n−
1
2

n∑
i=1

(
E|aniXi|I[|aniXi |>nα] + nαP(|aniXi| > nα)

)
≤ n−

1
2

n∑
i=1

E|aniXi|
(
|aniXi|

nα

)2(r−1)−1

I[|aniXi |>nα] + nα−2α(r−1)E|aniXi|2(r−1)


≤ n−

1
2+α−2α(r−1)E|Xi|2(r−1)

n∑
i=1

|ani|2(r−1)

≪ n−
1
2+α−2α(r−1) → 0, as n→ ∞ since − 1

2
+ α − 2α(r − 1) < 0.

Hence (3.7) holds. Therefore, to prove I1 < ∞ it is enough to show that

Ĩ1 =

∞∑
n=1

nr−2P
(
max
1≤k≤n

∣∣∣S (1)
nk − ES (1)

nk

∣∣∣ > ϵ
4

n
1
2

)
< ∞, ∀ ϵ > 0. (3.8)
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Note that {X(1)
ni , 1 ≤ i ≤ n, n ≥ 1} is still pairwise NQD by definition of X(1)

ni and Lemma 2. Using
Chebyshev’s inequality and Lemma 1, we get

Ĩ1 ≤
∞∑

n=1

nr−3E
(
max
1≤k≤n

∣∣∣S (1)
nk − ES (1)

nk

∣∣∣)2

≪
∞∑

n=1

nr−3(log2 n)2

 n∑
i=1

E
(
X(1)

ni

)2


≤
∞∑

n=1

nr−3(log2 n)2
n∑

i=1

(
E(aniXi)2I[|aniXi |≤nα] + n2αP(|aniXi| > nα)

)
≤
∞∑

n=1

nr−3(log2 n)2
n∑

i=1

(
E|aiXi|2(r−1)nα(2−2(r−1)) + nα(2−2(r−1))E|aniXi|2(r−1)

)
(3.9)

≤
∞∑

n=1

nr−3+2α−2α(r−1)(log2 n)2
n∑

i=1

|ani|2(r−1)E|X|2(r−1)

≪
∞∑

n=1

nr−3+2α−2α(r−1)(log2 n)2

< ∞.

Since, by the definition of X(2)
ni , S

(2)
nk > 0 and

(
max
1≤k≤n

∣∣∣S (2)
nk

∣∣∣ > ϵ
4

n
1
2

)
=

 n∑
i=1

X(2)
ni >

ϵ

4
n

1
2

 (3.10)

=

 n∑
i=1

(aniXi − nα)I[
nα<aniXi<ϵn

1
2 /8

] > ϵ
4

n
1
2


⊆ {there exists at least 2 indices k such that ankXk > nα} ,

we have

P

 n∑
i=1

X(2)
ni >

ϵ

4
n

1
2

 ≤ ∑
1≤i1<i2≤n

P
(
ani1 Xi1 > nα, ani2 Xi2 > nα

)
.

By Lemma 1 {aniXi, 1 ≤ i ≤ n, n ≥ 1} is still a sequence of pairwise NQD random variables. Hence,
we conclude that

P
(
max
1≤k≤n

∣∣∣S (2)
nk

∣∣∣ > ϵ
4

n
1
2

)
= P

 n∑
i=1

X(2)
ni >

ϵ

4
n

1
2

 (3.11)

≤
∑

1≤i1<i2≤n

2∏
j=1

P
(
ani j Xi j > nα

)
≤

 n∑
i=1

P (|aniXi| > nα)

2
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≤
 n∑

i=1

n−2α(r−1)E|aniXi|2(r−1)

2

≪ n−4α(r−1),

by (3.3) and (3.4). Note that X(2)
ni > 0 by the definition of X(2)

ni . Since r − 2 − 4α(r − 1) < −1 it follows
from (3.11) that

I2 =

∞∑
n=1

nr−2P

 n∑
i=1

X(2)
ni >

ϵ

4
n

1
2


≪

∞∑
n=1

nr−2−4α(r−1) < ∞.

Similarly, we have X(3)
ni < 0 and I3 < ∞.

It remains to prove that I4 < ∞. Let Y = 8X/ϵ. By the definition of X(4)
ni and (3.1) we have

P
(
max
1≤k≤n

S (4)
nk >

ϵ

4
n

1
2

)
≤ P

 n∑
i=1

X(4)
ni >

ϵ

4
n

1
2


≤ P

∪n
i=1

ani|Xi| >
ϵn

1
2

8


≤

n∑
i=1

P
ani|Xi| >

ϵn
1
2

8


=

∞∑
j=1

∑
( j+1)−1<a2

ni< j−1

P
(
|Y | > (n j)

1
2

)
=

∞∑
j=1

(N(n, j + 1) − N(n, j)) P
(
l ≤ |Y |2 < l + 1

)
≈
∞∑

l=n

(
l
n

)r−1

P
(
l ≤ |Y |2 < l + 1

)
,

which yields

I4 ≈
∞∑

n=1

nr−2
∞∑

l=n

(
l
n

)r−1

P
(
l ≤ |Y |2 < l + 1

)
≈
∞∑

l=1

lr−1
l∑

n=1

nr−2−r+1P
(
l ≤ |Y |2 < l + 1

)
≈
∞∑

l=1

lr−1 log lP
(
l ≤ |Y |2 < l + 1

)
≈ E

(
|X|2(r−1) log |X|

)
< ∞, by (3.4).
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Now we prove (3.5)⇒ (3.4). Obviously (3.5) implies

∞∑
n=1

nr−2P
(
max
1≤ j≤n

|an jX j| > n
1
2

)
< ∞, (3.12)

which yields

P
(
max
1≤ j≤n

|an jX j| > n
1
2

)
→ 0, as n→ ∞

by the hypotheses of Theorem 2. Hence, for sufficiently large n,

P
(
max
1≤ j≤n

|an jX j| > n
1
2

)
<

1
2
.

By Lemma 1 {an jX j, 1 ≤ j ≤ n, n ≥ 1} is still a sequence of pairwise NQD random variables. By
Lemma 3 and (3.1) we obtain

n∑
k=1

P
(
|ankXk | > n

1
2

)
≤ 8P

(
max
1≤k≤n

|ankXk | > n
1
2

)
. (3.13)

From (3.12) and (3.13) it follows that

∞∑
n=1

nr−2
n∑

k=1

P
(
|ankXk | > n

1
2

)
< ∞. (3.14)

So, by the process of proof of I4 < ∞ from (3.14) we obtain

E
(
|X|2(r−1) log |X|

)
≈
∞∑

n=1

nr−2
n∑

k=1

P
(
|ankXk | > n

1
2

)
≤ 8

∞∑
n=1

nr−2P
(
max
1≤k≤n

|ankXk | > n
1
2

)
< ∞.

Hence, the proof of Theorem 2 is complete. �

Remark 1. Theorem 2 shows that for identically distributed pairwise NQD random variables the
equivalence between complete convergence of series (3.5) and the existence of moment (3.4).

Moreover, we consider the sequence without identical distribution restriction and prove the fol-
lowing result.

Theorem 3. Let {Xn, n ≥ 1} be a sequence of zero mean pairwise NQD random variables and let
{ank, 1 ≤ k ≤ n, n ≥ 1} be an array of real numbers satisfying the conditions, for some 0 < δ < 1

n∑
k=1

a2
nk = O(nδ), as n→ ∞ |ank | = O(1), 1 ≤ k ≤ n, n ≥ 1. (3.15)
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If

sup
k≥1

EX2
k < ∞, (3.16)

then

∞∑
n=1

1
n

P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > ϵn 1
2

 < ∞, ∀ ϵ > 0.

Proof: Without loss of generality we assume that ank ≥ 0. By Lemma 1, (3.15), (3.16) and Cheby-
shev’s inequality we obtain

∞∑
n=1

1
n

P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > ϵn 1
2

 < ∞∑
n=1

1
n2 (log2 n)2

n∑
i=1

a2
niEX2

i

≪
∞∑

n=1

n−(2−δ)(log2 n)2 < ∞.

From Lemma 3 we obtain the following result. �

Corollary 1. Let {Xn, n ≥ 1} be a sequence of pairwise NQD random variables and let {ank, 1 ≤ k ≤
n, n ≥ 1} be an array of real numbers. Assume that for δ > 0 small enough,

P
(
max
1≤ j≤n

|an jX j| > ϵn
1
2

)
< δ, ∀ ϵ > 0

for sufficiently large n. Then

n∑
j=1

P
(
|an jX j| > ϵn

1
2

)
≪ P

(
max
1≤i≤n
|aniXi| > ϵn

1
2

)
, ∀ ϵ > 0

for sufficiently large n.

Remark 2.

1. Theorem 2 is an extension of Theorem 2.1(I) of Liang and Su (1999) to the case of pairwise NQD
random variables without extra conditions.

2. Theorem 3 and Corollary 1 show that Theorem 2.2 and Corollary 3.1 of Liang and Su (1999) still
hold under the pairwise NQD assumption with restriction p = 2, respectively.

3. As an application, we can prove the complete convergence of linear processes under pairwise NQD
assumption by Theorem 2.
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