• Title/Summary/Keyword: Navier stokes

Search Result 2,179, Processing Time 0.027 seconds

Application of Preconditioning to Navier-Stokes Equations (예조건화 방법론의 Navier-Stokes 방정식에의 적용)

  • 이상현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.16-26
    • /
    • 2004
  • The objective of this study is to apply preconditioning to Wavier-Stokes equations with a turbulence model. The concept of a pseudo sonic speed was adopted. Roe's FDS was used for spatial discretization, LU-SGS scheme was used for time integration. In order to test the algorithms, the low speed flows around NACA airfoils and the flows through supersonic nozzle were calculated. The algorithm developed in the present study shows good performance in the calculations of low speed viscous flows and supersonics flows.

ANALYSIS AND COMPUTATIONS OF OPTIMAL AND FEEDBACK CONTROL PROBLEMS FOR NAVIER-STOKES EQUATIONS

  • Lee, Hyung-Chun
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.841-857
    • /
    • 1997
  • We present analysis and some computational methods for boundary optimal and feedback control problems for Navier-Stokes equations. We use one example to illustrate our methodology and ideas which are applicable to general control problems for Navier-Stokes equations. First, we discuss the existence of optimal solutions and derive an optimality system of equations from which an optimal solution may be computed. Then we present a gradient type iterative method. Finally, we present some numerical results.

  • PDF

Convergence and Stability Analysis of LU Scheme on Unstructured Meshes: Part II - Navier-Stokes Equations (비정렬 격자계에서 LU implicit scheme의 수렴성 및 안정성 해석: Part II - Navier-Stokes 방정식)

  • Kim, Joo-Sung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.1-11
    • /
    • 2004
  • A comprehensive study has been made for the investigation of the convergence and stability characteristics of the LU scheme for solving the Navier-Stokes equations on unstructured meshes. For this purpose the characteristics of the LU scheme was initially studied for a scalar model equation. Then the analysis was extended to the Navier-Stokes equations. It was shown that the LU scheme has an inherent stiffness in the streamwise direction. This stiffness increases when the grid aspect ratio becomes high and the cell Reynolds number becomes small. It was also shown that the stiffness related to the grid aspect ratio can be effectively eliminated by performing proper subiteration. The results were validated for a flat-plate turbulent flow.

Critical Reynolds Number for the Occurrence of Nonlinear Flow in a Rough-walled Rock Fracture (암반단열에서 비선형유동이 발생하는 임계 레이놀즈수)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Fluid flow through rock fractures has been quantified using equations such as Stokes equations, Reynolds equation (or local cubic law), cubic law, etc. derived from the Navier-Stokes equations under the assumption that linear flow prevails. Therefore, these simplified equations are limited to linear flow regime, and cause errors in nonlinear flow regime. In this study, causal mechanism of nonlinear flow and critical Reynolds number were presented by carrying out fluid flow modeling with both the Navier-Stokes equations and the Stokes equations for a three-dimensional rough-walled rock fracture. This study showed that flow regimes changed from linear to nonlinear at the Reynolds number greater than 10. This is because the inertial forces, proportional to the square of the fluid velocity, increased enough to overwhelm the viscous forces. This tendency was also shown for the unmated (slightly sheared) rock fracture. It was found that nonlinear flow was caused by the rapid increase in the inertial forces with increasing fluid velocity, not by the growing eddies that have been ascribed to nonlinear flow.

Applications of Stokes Eigenfunctions to the Numerical Solutions of the Navier-Stokes Equations in Channels and Pipes

  • Rummler B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.63-65
    • /
    • 2003
  • General classes of boundary-pressure-driven flows of incompressible Newtonian fluids in three­dimensional (3D) channels and in 3D pipes with known steady laminar realizations are investigated respectively. The characteristic physical and geometrical quantities of the flows are subsumed in the kinetic Reynolds number Re and a parameter $\psi$, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form $\underline{u}=u_{L}+U,\;where\;u_{L}$ is the scaled laminar velocity and periodical conditions are prescribed for U in the unbounded directions. The objects of our numerical investigations are autonomous systems (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction, where these systems (S) were received by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u.

  • PDF

NAVIER-STOKES EQUATIONS IN BESOV SPACE B-s,(ℝn+)

  • Jin, Bum Ja
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.771-795
    • /
    • 2013
  • In this paper we consider the Navier-Stokes equations in the half space. Our aim is to construct a mild solution for initial data in $B^{-\alpha}_{{\infty},{\infty}}(\mathbb{R}^n_+)$, 0 < ${\alpha}$ < 1. To do this, we derive the estimate of the Stokes flow with singular initial data in $B^{-\alpha}_{{\infty},q}(\mathbb{R}^n_+)$, 0 < ${\alpha}$ < 1, 1 < $q{\leq}{\infty}$.

Numerical Simulation of Overtopping of Cnoidal Waves on a Porous Breakwater Using the Boussinesq Equations: Comparison with Solutions of the Navier-Stokes Equations (Boussinesq 식을 사용하여 Cnoid 파의 투수방파제 월파 해석: Navier-Stokes 식 결과와 비교)

  • Huynh, Thanh Thu;Lee, Changhoon;Ahn, Suk Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.41-49
    • /
    • 2019
  • We approximately obtain heights of cnoidal waves overtopping on a porous breakwater using both the one-layer Boussinesq equations (Vu et al., 2018) and the two-layer Boussinesq equations (Huynh et al., 2017). For cnoidal waves overtopping on a porous breakwater, we find through numerical experiments that the heights of cnoidal waves overtopping on a low-crested breakwater (obtained by the Navier-Stokes equations) are smaller than the heights of waves passing through a high-crested breakwater (obtained by the one-layer Boussinesq equations) and larger than the heights of waves passing through a submerged breakwater (obtained by the two-layer Boussinesq equations). As the cnoidal wave nonlinearity becomes smaller or the porous breakwater width becomes narrower, the heights of transmitting waves obtained by the one-layer and two-layer Boussinesq equations become closer to the height of overtopping waves obtained by the Navier-Stokes equations.