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CHEBYSHEV PSEUDOSPECTRAL-FINITE ELEMENT METHOD
FOR TWO-DIMENSIONAL UNSTEADY NAVIER-STOKES
EQUATION

Guo Ben-yu *and Hou Jing-yu'

Abstract A Chebyshev pseudospectral-finite element method is proposed for two-
dimensional unsteady Navier-Stokes equation. The generalized stability and the con-
vergence are proved strictly. The numerical results show the advantages of this method.
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1 Introduction.

Spectral and pseudospectral methods have the high accuracy. In particular, pseu-
dospectral method is easier to be performed. But in most practical problems, the
domains are not rectangular. This fact limits their applications. However, the sections
of domains might be rectangular in certain directions, such as a cylindrical container.
For solving such problems, it is natural to use Chebyshev pseudospectral-finite element
approximation, see [1]. In this paper, we develop a mixed Chebyshev pseudospectral-
finite element method for two-dimensional unsteady Navier-Stokes equation. It is easy
to generalize this method to three-dimensional problems with complex geometry. In
particular, it is easy to deal with the nonlinear terms. We also follow the idea in [2, 3] to
calculate the pressure based on a Poisson equation. Therfore we avoid the difficult job
of choosing the trial function space in which the divergence of every element vanishes.
We construct the scheme and present the numerical results in Section 2 and 3. The
numerical results show the advantages of this method. We list some lemmas in Section
4, and then prove the generalized stability and the convergence in the last two sections.

2 The Scheme.

Let I, ={z/ —1<z<1},I,={y /0<y<1}and Q = I, x I, . The speed and the
pressure are denoted by U = (U, Us) and P, respectively. v > 0 is the kinetic viscosity.
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Uy and f are given functions. Let T' > 0 and 9, = %, z = t,z,y. We consider the

problem
oU +d(U,U)+ VP —vVU = f, in Q x (0,77,
V2P +®(U)=V-f, in Q x (0,77, (2.1)
Uli=o = U, in QoN

where

d(U,V) =0,(ViU) + 0,(WU), @U) =2(0,U10.U» — 0,U,0,U>).

(2.1) is one of representations of Navier-Stokes equation. Suppose that the boundary is
a non-slip wall and so U = 0 on 9. There is no boundary condition for the pressure.
But if we use the second formula of (2.1) to evaluate the pressure, we need a non-
standard boundary condition. Sometimes, it is assumed approximately that g—}; =g(z)
on 0%, see [2, 3|. For simplicity, let g(z) = 0 in the following discussions. In addition,
for fixing the value of pressure, we require that for all ¢t < T,

// P(z,y,t)dzdy = 0.
Q

Since the derivation of (2.1) implies the incompressibility, we avoid the difficult job of
constructing the trial function space in which the divergence of every element vanishes.

Let D be an interval (or a domain) in R (or R?). L*(D), H"(D) and H} (D) (r > 0)
denote the usual Hilbert spaces with the usual inner products and norms. We also define

L(D) = {ue L*(D) / /DudD =0}.

Lol

Let w(z) = (1 —2?) 2 and

(. 0)or, = [ wowdz, ull, = (w0,
xr

L2(I;) = {u(z) / u is measurable on I, and ||ul|, s, < oo}
Furthermore
(o) = [ [ wowdady, |l = (u,w).,
0
L2(Q) = {u(z,y) / u is measurable on Q and |ju|, < co}.

Let ay(u,v) = (Vu, V(vw))2(q). The weak formulation of (2.1) is to find U € X2(9)
and P € Y(Q) for all ¢ < T such that

QU + d(U,U) + VP,v)y + au(U,0) = (f,v)s, Vv € X2(S),

i (2.2)
au(P,w) = (B(U) — V - f,w)., Yw € X ()



CHEBYSHEV PSEUDOSPECTRAL-FINITE ELEMENT METHOD 3

where

X(Q) = {u/ u g“ g“ 2(Q)},  X(Q) =X(Q)({u/u=0ond0},

0
Q)N L) {u / a—;‘ =0 for |z| = 1}.
We now construct the trial function spaces. For the Chebyshev approximation, let

N be any positive integer and Py (I;) denote the set of all algebraic polynomials of
degree < N, defined on I,. Moreover

VN(Iz) ={u(z) € Pn(Is) / u(—-1) = u(l) =0},
Wx(L) = {ulr) € Pu(L) / SH(-1) = T1) =0},
For the finite element approximation, let 7, be a class of regular decomposition of I,
with subintervals I; = (y;_1,y), 1 <1 < M where 0 = yo < 11 < -+ < yy = 1.
Suppose that 75, satisfies the inverse assumption. Let h = maxj<j<ps |y — Yi—1], h =
ming<;<pr |yr — yi—1]. Then h/h < d, d being a positive constant independent of h.
Moreover let £ > 1 and

SE(I,) = {v(y) / vlp € Pe(D),1 <1< M}, S, 1,) () Hy (1,

Then we take the spaces X }{,h(Q) and Y](}h(Q) as the trial function spaces for the speed
and the pressure respectively, defined as

XNa(Q) = V(L) ® Si(Ly),  YN,(Q) = Wx(L) ® (S5(L,) (VH' (1,)] [ L5()

In addition,
XJ’*'M(Q) V(I 1) H'(,

Next, let 1) and w/) be the nodes and weights of Gauss-Lobatto integration. The
corresponding discrete inner products and norms are defined as

N
(v)vw =D w(@W )o@, luly, = (u,u)ye,
=0
() Npw = Jo Wv)vwdy,  [uld s, = (U 0) x5

Clearly, if uv € Pon—1(I;)® L*(I,), then (u,v) N pw = (u,v)y. Let P.: C(I;) — Pn (1)
be the interpolation, i.e., Pau(z")) = u(zl)), for 0 < j < N. Let I} : C(I,) —
Sk(I,) N H'(I,) be the piecewise Lagrange interpolation of degree k over each I;. Fur-
thermore, let Py : L2(Q2) — X]I\{h(Q) be the L?(2)-orthogonal projection.

Let 7 be the step size of time t, R, = {t =7 / 1 <1 < [£]} and R, = R, U{0}.
Set

w(t) = l(u(t +7) —u(t)).

T
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For approximating the terms in (2.2), we define
de(u,v) = 0p Pe(viu) 4+ Oy Pe(vau),  anpw(u,v) = —(8%U,U)N7h7w + (Oytt, Oy0) N hws

Q. (u) = 2[P.(0yu10,u2) — Pe(0pu10yus)).

Let A > 0,0 <o <1, u and p denote the approximations to U and P respectively. The
Chebyshev pseudospectral-finite element scheme for (2.2) is to find u € (X455} (Q))?
and p € Y]G’h(Q) such that for all t € R,

' (ur + de(u,u) + Vp,v) N o + van (v + oTug, v)
= (.0 we ROy, o
an hw(Psw) = (Pe(u) = V- fLw)Nhw, Vw € X} ,(9),

\ u(0) = Py Up.

3 Numerical Results.
We take the test functions

Ur(z,y,t) = AeP'(z* —1)%y(y — 1)(2y — 1),
Us(z,y,t) = —2AeP (z* — 2)y*(y — 1)?,
P(z,y,t) = 4Ae*P (2 — 32)(2y3 — 3y> 4 0.5).

We use scheme(2.3), in which the interval I, is divided with the mesh size hy, = 1/M.
For comparision, we also consider the finite element scheme (FEM). In this case, the
domain is divided uniformly into rectangular subdomains with the length h, = 2/N*
in z-direction and h, = 1/M in y-direction, U is approximated by quadratic finite
element and P by linear finite element. For describing the errors, let

fx :{xj /(L‘j = COS jﬁﬂa 1 S] SN_I}a for (23)3

I, ={zj | zj = =1+ jh,, 1<j<N*—1}, for FEM,

I, ={y; [ yj=jhy, 1<j<M—1}, for (2.3) and FEM
and
2 1/2
Z Z Z |Uq($,y,t) - uq(ac,y,t)|2
a=1 :EEIA.,- yEi,,
EU(t) =

2
Y>> Uy, )

q=1 iEEj.:' yGi,,
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The error E(P(t)) is defined similarly. In calculations, v = 0.0001,A = 0.2, B = 0.1
and k£ = 1. We first take N =4, M = N* =10, 7 = 0.005 and o = 0. The numerical
results are shown in the Table I. Clearly, scheme (2.3) gives better results than scheme
FEM. We also take N = 10, M = 10, 7 = 0.001, 0 = 0 and A = 1 in scheme (2.3).
The corresponding results are shown in Table II. We find that when N increases and 7
decreases, the better results follow. It shows the convergence of scheme (2.3).

Table I. The errors of scheme (2.3) and FEM.

Scheme (2.3), A =1 Scheme FEM

t | EU®)

E(P(1)

EWU(1)

E(P(1)

0.5

0.9167E-04

0.8455E-03

0.1371E-02

0.6378E-02

1.0

0.1806E-03

0.8727E-03

0.2758E-02

0.6697E-02

1.5

0.2699E-03

0.8969E-03

0.4148E-02

0.7035E-02

2.0

0.3598E-03

0.9229E-03

0.5542E-02

0.7381E-02

2.5

0.4507E-03

0.9500E-03

0.6943E-02

0.7738E-02

4 Some Le

Table II. The errors of scheme (2.3).

t

EWU(1))

E(P(1))

0.5

0.5144E-04

0.2061E-03

1.0

0.7531E-04

0.2120E-03

1.5

0.9928E-04

0.2173E-03

2.0

0.1234E-03

0.2230E-03

2.5

0.1478E-03

0.2288E-03

mmas.

We first introduce some Sobolev spaces with the weight w(z). For any integer r > 0,
set

r
lrwor, = 105llors  Nellrwr, = (O [ulwrn)'?,
m=0

Hi(I:) = {u(z) / |ullrwr, <oo}.

For real r > 0, the space H/,(I,) is defined by the space interpolation. Furthermore,

Cy°(Iz) = {u(z) / w is infinitely differentiable and has a compact support in I, }.
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Denote by Hj (1) the closure of C§°(I;) in H[(I;). Besides, L>(I;) is the space of
essentially bounded functions with the norm || - ||«.1, -
Next, let B be a Banach space with the norm || - ||g. Define

L*(D,B) = {u(z) : D — B / u is strongly measurable and lwllz2(r,8) < 0o},

C(D,B) ={u(?) : D — B / u is strongly continuous and ||u|¢(7,p) < oo}
where

lullz2(,m) = /Ilu 2Bd2)'"?, lullep,p) = max Ju(2)||s.

For any integer s > 0, define
H*(D, B) = {u(z) / ||lullgs(p,s) < oo}

equipped with the semi-norm and norm
|U|H'9(D,B) = H3§UHL2(D,B), ““HH* D,B) Z |U|Hm DB 1/2-

For real s > 0, the space H*(D, B) is defined by the space interpolation.
We now introduce the non-isotropic space

HN(Q) = L*(I,, HL (1)) (VH (I, L} (1,)), r,5>0

with the norm
allZrs 0y = Nl Zagr, mr 1)+ Nl T ay 02 )

Also let

M3 (Q) = Hp(QNH*' (I, Hy(L;)), rs>1,

A(Q) = HE (1, HY (L)) mHS(I HL (L) NVH T (1, HY (L), 78 20,
Y28 (Q) = HEH @) N HE (1, B (1) B (1, 5E(1,), rs 20, 6> 0,
YIS0(Q) = H5H(@) mﬂlu HI(L)) (VB (1, HL(1) (VE (1, B (L))

(L, 12 (1) (B3, HET (1)

NHEH (1, BIT(1,), s >0, 6> 0.
Their norms are defined similarly. Furthermore let Hy},(€2) be the closure of C§°(€)
in H*(Q). If r = s, then H;"(2) = H/ (), and denote their semi-norm and norm by

| - |rw and || - ||, respectively, etc.. Denote by L>®(I,), L®(£2) and W1>°(Q2) the usual
Sobolev spaces with the norms || - ||x.7z, || - lloo and || - [|1,00, €tc..
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For simplicity of statements, let § = min(s, k4 1) and denote by ¢ a generic positive
constant independent of A, N, 7 and any function. In some lemmas, we require that
there exist a suitably big positive constant ¢; and a positive constant ¢y such that

cth™3 < N < esh 3. (4.1)
Lemma 1. If u(z,y,t) € C(I;) x L*(I,) for all t € R,, then
2(u(t), ue (8))whw = (lu@)Fnw)e = Tlue @3-
Let Py denote the Chebyshev truncated operator. We have that (see [4])
|lu — PNUHLZ(IJ.) < 00N7qN_m||uHng.q(L,), m>0, 1<¢g<o0 (4.2)

where oy, = 1+ InN for ¢ =1 or ¢ = 00, and oy = 1, otherwise.
Lemma 2(Lemma 1 of [1]). If u € C(I,;) x L*(I,) and v € Py(I;) x L*(I,), then
lollo < ol pe < V2[0llo,

(V)N hw = (0, 0)0] < ellu = Pyullo + [[u = Peullo)|[v]l-
Lemma 3(Lemma 2 of [1]). For any u € X]]{fh(Q) with £ > 1,
Lo

anhw(u,u) > ZHUHL‘“'
Lemma 4(Lemma 5 of [5]). For any u € le{,h(Q) with £ > 1,

lulloe < e(N/R)'? ullo-

Moreover, for any u € H} (),
1Py ulloo < cInN)'2 a0

Lemma 5(Lemma 2 of [5]). Let u € Hy,(Q) N H*(Q) with 0 <7 < 1,5 >0, or
w € Hg () N HL* () with r > 1, s > 0. Then

lu = Prpullo < e(N7" + %) Jull s )

Lemma 6(Lemma 5 of [1)). If uw € HP(I,, H(I;)) with 8 > 0,7 > 1/2 and
0 <a<r,then

= Peull o, o,y < N ull o r, i, -

yrttw

We now introduce the projection Py, : H&W(Q) — Xk . (Q) such that for any
u € H&W(Q),
aw(Py pu,v) = ay(u,v), Vv € X]’Vh(Q),
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and the projection Py : H&W(Q) — X]]{fh(Q) such that for any u € H&7W(Q),
aN,h,w(P]%,hua U) = a’w(ua ’U), Vv € X]IKT,h(Q)
Lemma 7. Let (4.1) hold and k > 1. If u € Hj () N M*(Q2) with r,s > 1, then

= Pl o < N7 4 1) full o gy,

lu = P pulli < N+ B ull -

r+i,s

If in addition v € M, *"(£2), then

lu — Py pullo < (N7 + hg)!lﬂllM,-+§.,q ;

(9)

lu — Py pulle < e(N7"+ hg)llUllM,-%,g

@
Proof. The first and the third conclusions come from Lemma 4 of [6]. Next, as in
the proof of lemma 7 of [1], we have

= Pl < eV + B fully s
Finally, following the same line as in the proof of Lemma 7 of [1], we get

s = P§ pullo < N+ I BT ul]

)
Lemma 8. Let (4.1) hold. If u € H&W(Q) NHP(1,, HY(I,)) with o, 3 > 1/2, then

Py ulle < cl|u 7 .
WEntloo = el 48 0) o, s

If, in addition, v € A%?(Q) with «, 8 > 1/2, then
1P stll o < cllull o -
Proof. We have
1P§ pullo < PR pu = T Pyullso + T Pyull.
By Lemma 4, Lemma 7, (4.2) and Theorem 3.2.1 of [7],
1Py pu — T Pyl oo < CIIUlleg.g(Q)-
By Lemma 5 of [6] and Theorem 3.1.5 of [7],

Ik Pyaslloo < el Prull o, e,y < el me))-
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Next, we prove the second conclusion. Let P} : HE(I,) — SF(I,) be such that for
any u € Hj (1),
(0y(Ppu —u), 0yv) 21,y =0, Vo € Sp(I,).

Then we have (see [8])
lu = Pyullyr, < ch*Hulsg, s>1, 0<pu <1,
Also let P} : H&W(Ix) — Vn(Iz) be such that for any u € H&W(Ix),
(0p(Pryu — u), Or(vw))2(r,) =0, Vv € Vn(1Iy).
We have (see (9.5.17) of [4]),
lu = Phullper, < eN*lullgyry, 0<u<1, r>p
Now, we begin to estimate || Py ,ull1,0- In fact,
[Py pulioo < [Pyt — Py ptlieo + [Py pulic- (4.3)
By Lemma 4,
C * N C *
[Py pu— Py pulie <c I|PN,hu — Py puliw- (4.4)
Let ¢ be the identity operator. By Lemma 3 and the definitions of Pﬁah and P]’([7h,
IPY pu = Py pulli, < danpw (PR pu — Py pu, Py u — Py yu)
< 4(( — Pn—1)0y Py pu, 0y (P ju — Py pu))w|-
Therefore
1P§ = Pyl < ell(9 — Pa—1) (8, Py pu— 9, PL Pl + ¢l (9 — Py—1)3, P Prull..
(4.5)
Furthermore
10 — Py1)(@, Pl — 8, P Phw)lly < el Py — PiPYullie.  (4.6)

Let W = Pj{,’hu — P,}P]{,u. We have from Lemma 3 and the definition of Pj{[’h that

1Py pu = Py Pyulliy, < day(Py u — Py Pyu, Py ju— Py Pyu)
= 4(0y(u— Py Pyu),0,W ), + 4(0:(u — Py Pyu), 0. (Ww)) 12(q)
= 400y (u — Pyu),0,W )y, + 4(0: (u — Pju),0,(Ww)) 12(0).-
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Thus
1Py — PLPYullie < eV 4 W)l oy a7

Similarly
169~ Py—1)d, P Pulls < N llulls 1, 201 (48)

Thus we have from (4.5)-(4.8) that
1PR pu = PR pullie < N7+ Bl g, ) (0, )

and so (4.4) implies that

P u— Pyou < c|lu 7 - ) 4.9
Pt Pl Sl g (4.9)
Now, we turn to estimate [Py ,uli 0. Clearly
* N * 1pl 1pl
|PN,hU|1,oo <c X|PN,hu — Py Pyuliw + | Py Pyuli o (4.10)
From (4.7),
Pi o, u — PlPyvu < cllu T . . 4.11
V A | s = BBl < ellull o b natbamy (410

On the other hand,
|PhlPJ{7u|17oo < “ayPhIP]{IU“oo + ||893P}11P]{IU||00-
Furthermore

10, P Piullc < 118, PL Py — 9, P} Pxull + 9, P} Py — 0,15 Prull + 0,115 Pyru]c

< el g .
HY( L,,H D) (VHP (L, HS (1))
(4.12)
Similarly
19:P; Pl < CHUHHG I, HY (L) (VHP (L, HS ™ (1)) (4.13)
and so
1P Pull o0 < clul - (4.14)

HY (1), H ﬂH 6( L)) (Y HP (1, He (L) () H (1, HE (1))

Therefore we have from (4.10), (4.11) and (4.14) that |Py ,uli00 < c||u||Ag.,j(Q)
Lemma 9(Lemma 9 of [1]). If u,v € Y"*9(Q) with r,s > 0 and § > 0, then

vl < ellulygos gy ol s -
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Lemma 10(Lemma 10 of [1]). If u € L2(2) and v € H&7W(Q), then
|(u, O (vw)) 20| < 2l[ullwfv -

Lemma 11(Lemma 8 of [6]). There exists a positive constant ¢; depending only
on the value of d, such that for all u € Py (I;) ® (H'(I,) N SE(L,)),

Julf o < N+ cah™) [lull?

Lemma 12. Let (4.1) hold. u € Wx(I,) x (SF(I,)NH'(I,)) and g € Py(I,) x
(S',Ii(Iy) N H!(I,)) satisfy the following equation

anhw(t,v) = (9,0)Nhw, YUE X']’([h(Q) (4.15)
Then we have

[ull1w < cllglle-

Proof. Let 7 = (1 — 22)/2. Define the spaces L%(Ix) with the norm ||ul],;, and
Hy(I;) with the norm |[lu||;; 1, in the same way as L2(I;) and H!(I,), etc.. From
Lemma 3.1 of [9], for any £ € L%(Ix) and X > 0, there exists a unique function W €
H%(Ix) such that

LW =—-ZW L \W =¢,  in I,

da? (4.16)
a(-1)=22(1)=0.

Let H™*(I;) be the dual space of H*(I;). We have from (4.16) that

Wz (1, + MW NG, < cll€l -
(52) (1) (1)

xr

Furthermore, if ¢ € L?(I,), then by multiplying (4.16) by W and integrating by parts,

dz?

IW By + MW 1y < el
By the space interpolation, if £ € H *(I,) with 0 < s < 1, then W € H?%(I,) and
IW By + MW ey < ell€mar (4.17)
Since for any real s > 0, H;(I;) C H*~'/4(I,)(see Theorem 4.2 of [9]), we get

z 2 < 2 < 2 :
W, F AW <y, < el (1.18)

Moreover for any real s > 1/4, H*(1,) C Hffl/él(lx)(see Theorem 4.1 of [9]), and thus

WIS ., + AW,

< clélly, = clLWI - (4.19)
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Next, consider an auxiliary problem. It is to find A € R and ¢ € Sf(I,) N H'(1,), such
that

—— —)\/ zdy, VzES HY(I 4.20
) dydy™ pady ()N (4.20)

Then there exists a normalized L?(I,)-orthogonal eigenfunction system {¢;(y)}, | =
0,1,2,---, My. The corresponding eigenvalues are ranged as

0=X <A <A< <Ay,
Let ¢o(y) = 1. By (4.20), we know that

L dgy. dy

—dy = A0k, k,1=0,1,2,---, Mp. 4.21
o dy dy Yy kOkl h ( )

Let {A\()} be the eigenvalues of the corresponding continuous problem, that is

d2

— Z Au,

Y

du du
—(0)=—(1)=0
o) =T

Then MY = 7212, 1 =0,1,---. We have that for sufficiently small & and certain positive
constant ¢ (see [2]),
AD < X < MO 4 25n2R N D)+ (4.22)

Now, we turn to prove the lemma. Since u € Wy(I,) X (S',lf(Iy)ﬂHl(Iy)) and
g € Pn(Iz) x (Sy(I,) N H' (L)), we put

M, M,

u=" w(z)(y), 9=">_aqlx)d(y)
=0

=0

where u; € Wy (1), g1 € Pn(I;). From (4.15),

M, d2 My, M, =1
(Z I ——ily Zul )0y 1 (1), Oy0) N = (O g1(@) i (y), V)N hw, Yo € XN ().
1=0
(4.23)
We first let [ # 0, v = (1 — 2%)z(z)¢i(y) and z(x) € Py_a(I;). Then
d’*u
_(%;azl)n,[,- + X(ur, (1= 2)z)Nw = (g1, (1 — 2%)2) Nw
and so
d’uy
(Lug, 20)y.1, = (=—— + Nw, 2001, = (91, 20,1, + B1(z1) + Ez(21) (4.24)

dx 2
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with
Ey(z) = M(ui, (1 — 2% 20)w1, — Nilur, (1 — 2%)20) N,
By (z1) = (g1, (1 = 2*)21) v — (g1, (1 = 2%) 21)u 1,
Let }5N be the Li([x)—orthogonal projection, and z; = 15N_2Lul. Then we have

2 = L — N(u; — Py_sw;) € Py_o(Ly).

So (4.24) reads

1wl = MN(Lugwg — Py_sw)yr, = (g0 L)y, — Mi(gisw — Py—awg)y 1, (4.25)
+ By (Px_aLug) + Ey(Py_aLuy).
Furthermore, since (1 — 2?)z; € Py(I,), we get from (9.3.5) of [4] that
By (Py—aLw)] < eAillw = Pryovullog, (1wl g, + Nillw = Py—2ully r,),
| Bo(Py—2Lup)| < ellgillo,, (| Lully,z, + Aillur — Py—suilly,z,)-
By substituting the above estimations into (4.25), we obtain
1 2 2 2 i 2 i 2
ShLwlly s, < ellgillir, +eAr(lu = Py—yullir, + llur = Py—zully ) (4.26)
We know from (4.19) that
||Ul||?g7w7fr + )\l“UlHiw,Ll, < el Luylly -
Since
lur — Py—ywillwr, < eN7"lwllvw,r,,  forr >0,
we obtain from (4.26) that
a3+ lall,,, < el + NNl (4.27)

We know from (4.22) that
A < A, < A oK NMTEHLE AOD) — (A, )22,

Since My = O(3), we have \; < ch™. Thus 1—cAfN ™3 > 1—cAj, N™3 > 1—ch™'N3,
Thanks to condition (4.1), we have 1 — ch™*N~3 > o > 0. Hence (4.27) implies that

hall} o, + Ml o, < ellanl s,

and so for [ # 0,
it 1, + Millwll?,r, < ellgill? s, - (4.28)
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Next, we consider the case with [ = 0. By taking v = —(1 — 2%)2upgo(y) =
—(1 — 22)0%ug in (4.23), we get

10%u0ll5 1, = —(90, (1 = 2*) o) v < €llgollwz, 107 uolly.z, -

Hence ||02uo||y,1, < ¢/|g0]|w,r,- On the other hand, since uy € Wy (I,), we have

wolr, < [ w@)(] n(@)@2u)ds)( [ wla)dz)ds < cldull,

r

and so
luol oz, < €llgollZ 1, - (4.29)
Finally, we have from (4.28) and (4.29) that
M,
lullfe =D (wlfwr, + Nllwllr,) < cllgll-
=0

5 The Generalized Stability.

Assume that u(0) and f(¢) have the errors %(0) and f(t) which induce the errors of
u(t) and p(t), denoted by u(t) and p(t) respectively. Then
(U, V) Npw + (de(tyu + @) + de(u, @) + VP, v) N pw
+vay (@ + o7l v) = (f,0)N hw, wo e (XERN@)2  (5.1)
an (B w) = (Bc(@) + Op(w, @) = V- fyw)vpw,  Yw € Xk, ()
where
Q7 (u, 0) = 2[P.(0yu10,02) + Pe(0yt10yus) — Pe(0pu10yta) — Po(0y010yu2)).

Let ¢ > 0 and m be an undetermined positive constant. By taking v = 2a(t) +
m7U(t) in the first formula of (5.1), we have from Lemma 1, Lemma 2 and Lemma 3
that

(Wil )+ 7m — 1= el + 11N + 222 i, + 07 (0 + 2)
6
(023 o + 1030, )e = P08 g = TN 0) + A+ B+ I Fy (5.2)
j=1

< 2llallf + 2+ TIPS

where

F3 = 2(d0(aaﬂ)7a)]v,h,w’ F4 =

\]
¥
o
b4
b
=
=
=
&

Fs = 2(Vp, )N hw, Fs =mt
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We have from Lemma 1 of [10] that ||vw? ||, 1, < |[v]1w1, for any v € H&W(Ix), and so
v
Al +[B] < (o + )||8 ally, +dvr(o + < )||8 |3

Let |u|1th = ||893U’||%V,h,w + ||6yu||?\,hw Then (5.2) leads to

(1@l pw)e + 7(m = 1= e)llauliyp, + (4 —m —20)af , +v7(o + F)(al7 )
6
ARGy |1F , — Sv7 (0 + Bl y g + D F < 20AlF + (24 —45 )IIPchIi-
j=1
(5.3)

Now we estimate|Fj|. Firstly, by Lemma 2 and Lemma 10,
. 2 1 .
Bl <l + 23 il + S5l )
Similarly

2
1
1)< ViR, + 0 gy, 4 0D

el 3ol

By Lemma 4 and Lemma 10,

Bl < Slak, + 95T lall3lal .

Similarly

2.
|[Fal < g laff, + Al Blaf .

Now, we apply Lemma 12 to the second formula of (5.1) and obtain that

Bl < c(1Pe(@)llo + 192 (u, @) o + 1 P(V - Hll)-

Moreover,
|9c(@)llo < el < e/ Nl
192 (u, @)l < eluf oot w-
Thus
Pliw < cllulicoldlie + \/glﬂl?,w +[|Pe(V - L)
and
Bl < Flalt, + e+ Slulllalls + Sellalglal, + PV - P2
By Lemma 11,

Fil < ~ 112 @2 ~12 CmZTPV-~2
[Fe| < erllally + < |uli ool , + PV - PG

+EE 2N + cgh™?) al3lal -
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Let [|ul||1,00 = maxcr, |u(t)]1,, etc.. By substituting the above estimations into
(5.3), we have from Lemma 2 and Lemma 12 that

(lalfp)e +7lm =1 =28 —v7(5(20 +m) + 5 — ) (2N + cgh™?)] |||
+5(F —m =20 —de)|af, +vr(o + 5)([aff v o)t (5.4)

< Millall + B(llall.)|al, + G
where

My =c+ ST +m)lull + llullf o,
B(llall) =—% + = ulllf o

HE A+ m)InN + GG+ m?r (2N + cah?)][[all?,
G =2+ 5PN + L+ 2| PV - I

Let € be suitably small and p suitably large. Suppose hat

1
vr(2N* + ¢qh™?) < 5.5
N ) < e 5:5)
We take 13 )
m = (5= + 2 + 100vT(2N* + ¢gh™%)(1 — =)\
32 W
Then the coefficient of the term @ | in (5.4) is not less than 75. Moreover, if
100 7 79
—— + — — 20 —4e) (== — 20 — 6e) 7" 5.6
p> (g g by~ 20— 20697 (5.6

then the coefficient of the term |’CL|%W in (5.4) is not less than 5. Thus (5.4) reads

(allFp.0)e + Fllaels + g5l +vrlo + 3)(alF ypw)

< Mi||all?, + B(llall)lal?, + G-

(5.7)

Let
E(t) = a2 + 5 Z'F“Z (Tlla: ()12 + viat) ),
<
p(t) = 2[[a(0) || +v7(20 +m)|a(0)F, + 7 Egeﬂg G1(t').
<

By summing (5.7) for t € R, we have

E(t) <p(t) +7 Y (MiE(l') + B(E(t)[al{.)-

t'eR,
t'<t
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Finally, we use a discrete inequality Lemma 4.16 of [2] to get the following conclusion.
Theorem 1. Assume that

(i) (5.5) and (5.6) hold;

(ii) for certain suitably small positive constant c3, 7||ull|? o, < c3v;

(iii) there exist positive constants d; and dy depending only on |||ul|[1, and v such

that p(t)ed < % for some t; € R,.

Then for all t € R;, t < t1, we have

E(t) < p(t)eht.

6. The Convergence

Let the P} be the operator such that for any u € H'(I,),

1 1 . ~
/ Gyuayvdy:/ 9y (Pyu)dyvdy, VvES,’f(Iy)ﬂHl(Iy),
0 0
1

/ (u — Plu)dy = 0.
0

We have that for any v € H*(1,) with s > 1,
l|lu — P,%UHH,,(L’) < ch§7”“u||H;(Iy), 0<u<l, p<s. (6.1)
Let U* = P§ U and P* € Py(I,) x (SF(I,) N H'(I,)) defined by

oP

~ T ~
P =BiP(-Ly + [ BiPYL S
-1 0s

(s,y)ds.

Set U =u — U* and P = p — P*. Then by (2.2) and (2.3),

4

(U + do(U,U* + U) + de(U*,U) + VP, v) x gt

I/CLNJLM(U + 0’7’(7,5,1)) = ZAj (v), Yo € (X;{}T{‘(Q))Q,
j=1
8
an pw(Pyw) = (D(U) + @4(U*U), w)npw + Y Aj(w), Yw € X} (),
=6

U(0) = PxslUo — Pg U,

where
Ai(v) = (OU,v)w — (U, 0) N hws Az(v) = (d(U,U),v)0 = (de(U*,U"), 0) N 0
Az(v) = —votanpw(Uf,v), Ay(v) = (VP,v)y — (VP 0) N hw,
As(v) = (f,v)Npw — (fs0)w) Ag(w) = au(P,w) — anpw(P*,w),
Ar(w) = =(2(U), w)w + (2c(U"), w) N pw, As(w) = (V- fw)y — (V- fLw) N e
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Now, we turn to estimate |A;|. Let § be the same as before and § = min(k + A + 1, 5).
Take v = 2U in Aj, 1 <75 <5. We obtain from Lemma 2, Lemma 6 and lemma 7 that
for r, s > 1,

IN

A O] < el N0 20 4720)) + (N7 + h§)||Ut||M,.+i.§(Q) + 10 = Py—1)Uf ) 10 L

IN

7112 —2r 25 2 2
“UHw + C(N + h )||U||C1(O7T,Ml+“l1q(ﬂ)) + CT||U||H2(t7t+T;L3(Q))a

[ 42(0)| < (N~ + 1°)(IUI}

yrosig) T (WUl + U ||00)||U||M:+§.§(Q))|U|17wa

A3(0)] < cvor(|Uf — Uil + ||Utr|1,w)|0|1,w < evor|Ullex o oy Ul
AdD)] < N+ WP gsir, sy (et oy (1 s+ 17]1.0),
A5 (@) < e(ll(9 = Pl + 10 = Puct) FI)IT L < cN-"nfanuy,H;(m)||r7||w,

|[4g(w)] < e(N7"+h7)||P| [l

H(L,,Hq -))ﬂHQ(I,quHr nHl w l+1 nL U’Hur‘) ))

Az (w)] < (N7 + b ((IU ]l + IIUH1,oo)||UHML;+1.,a(Q) + HUllilrf«s(Q))llwllw,

[As(w)] < eN "W llog, e D) () HH (1, H( llwlle-

Similarly, we take v = m7U,; in Aj(v), 1 <j <5, and estimate them, such as

m7|Ay(T3)] < eT| T2 + L2 (N2 + 12)||U ] i)
S (Q

2.2 9
C1(0,T;M. + &=l (L)

Moreover, by Lemma 5, Lemma 7 and Lemma 11,
1T O +7ITO)F, < e(L +27N* + cqrh™) (N~ + h2§)IIUo|IL,-+i.,a(Q),

10" e < Ul gosqye for o B> 4.

Besides, if (5.5) holds and r > £, 3> L, §> 1 then 72+ N~ 2 + h% + h26-1 = o(L).
Finally, by an argument similar to the proof of Theorem 1, we have the following
result.
Theorem 2. Assume that
(i) A > 1, (4.1) and condition (i) of Theorem 1 hold;
(ii) forr > 1, s > 13/6 and o, B > 1/2, U € C(0,T; MIH5(Q) O\ W2 (Q) N A5 (Q)N Y{jf"s((z))
NC (0,75 ML () V20, T5 T2 (@)
(iii) forr > 1 and s > %, PeC(0,T;H¥(I,, H3(I,)) N H*(I,, H; ™ (I,)) N H (1, HL (1))
and f € C(0,T; L2(Iy’ HLJFI([@")) N Hl(va Hj(I3)))-
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Then there exists a positive constant ds depending only on v and the norms of U
and P in the spaces mentioned above such that for all ¢ < T,

WU () —u(t)]|, < ds(7+ N4+ h5+ 051,
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