• Title/Summary/Keyword: Nanosized powder

Search Result 71, Processing Time 0.024 seconds

Austenite Stability of Sintered Fe-based Alloy (철계 소결합금의 오스테나이트 안정성)

  • Choi, Seunggyu;Seo, Namhyuk;Jun, Junhyub;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.414-419
    • /
    • 2020
  • In the present study, we investigated the austenite stability of a sintered Fe-based nanocrystalline alloy. The volume fraction of austenite was measured based on the X-ray diffraction data of sintered Fe-based nanocrystalline alloys, which were prepared by high-energy ball milling and spark plasma sintering. The sintered alloy samples showed a higher volume fraction of austenite at room temperature as compared to the equilibrium volume fraction of austenite obtained using thermodynamic calculations, which resulted from the nanosized crystalline structure of the sintered alloy. It was proved that the austenite stability of the sintered Fe-based alloy increased with a rise in the amount of austenite stabilizing elements such as Mn, Ni, and C; however, it increased more effectively with a decrease in the actual grain size. Furthermore, we proposed a new equation to predict the martensite starting temperature for sintered Fe-based alloys.

Fabrication of Core-Shell Structured Ni-Based Alloy Nanopowder by Electrical Wire Explosion Method

  • Lee, A-Young;Lee, Gwang-Yeob;Oh, Hye-Ryeong;Kim, Hyeon-Ah;Kim, Song-Yi;Lee, Min-Ha
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.409-413
    • /
    • 2016
  • Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.

Effect of Reaction Parameters on Silica Nanoparticles Synthesized by Sol-gel Method (졸-겔법에 의한 단분산 실리카 나노입자 합성에 미치는 반응변수의 영향)

  • Lim, Young-Hyun;Kim, Do Kyung;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.442-446
    • /
    • 2016
  • The sol-gel method is the simplest method for synthesizing monodispersed silica particles. The purpose of this study is to synthesize uniform, monodisperse spherical silica nanoparticles using tetraethylorthosilicate (TEOS) as the silica precursor, ethanol, and deionized water in the presence of ammonia as a catalyst. The reaction time and temperature and the concentration of the reactants are controlled to investigate the effect of the reaction parameters on the size of the synthesized particles. The size and morphology of the obtained silica particles are investigated using transmission electron microscopy and particle size analysis. The results show that monodispersed silica particles over a size range of 54-504 nm are successfully synthesized by the sol-gel method without using any additional process. The nanosized silica particles can be synthesized at higher TEOS/$H_2O$ ratios, lower ammonia concentrations, and especially, higher reaction temperatures.

Fabrication and Characterization of Highly Reactive Al/CuO Nano-composite using Graphene Oxide (산화그래핀을 적용한 고반응성 Al/CuO 나노복합재 제조 및 분석)

  • Lim, YeSeul
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.220-224
    • /
    • 2019
  • The aluminum (Al)/copper oxide (CuO) complex is known as the most promising material for thermite reactions, releasing a high heat and pressure through ignition or thermal heating. To improve the reaction rate and wettability for handling safety, nanosized primary particles are applied on Al/CuO composite for energetic materials in explosives or propellants. Herein, graphene oxide (GO) is adopted for the Al/CuO composites as the functional supporting materials, preventing a phase-separation between solvent and composites, leading to a significantly enhanced reactivity. The characterizations of Al/CuO decorated on GO(Al/CuO/GO) are performed through scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping analysis. Moreover, the functional bridging between Al/CuO and GO is suggested by identifying the chemical bonding with GO in X-ray photoelectron spectroscopy analysis. The reactivity of Al/CuO/GO composites is evaluated by comparing the maximum pressure and rate of the pressure increase of Al/CuO and Al/CuO/GO. The composites with a specific concentration of GO (10 wt%) demonstrate a well-dispersed mixture in hexane solution without phase separation.

Precise Analysis of the Surface Oxidation Layer on Cu Powders Using FE-TEM Techniques (전계방출 투과전자현미경 분석기술을 이용한 Cu 입자 표면산화층의 정밀평가)

  • Lee, Tae Hun;Yoo, Jung Ho;Hyun, Moon Seop;Yang, Jun-Mo;Seong, Mi-Ryn;Kwon, Jinhyeong;Lee, Caroline Sunyong;Kim, Jeong-Sun;Baik, Kyeong Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Nanosized surface structures of Cu powders were investigated at the atomic scale by field-emission transmission electron microscope techniques. The nanoscale surface oxide layer on the Cu powder was analyzed to be the $CU_2O$ phase by electron diffraction pattern and electron energy-loss spectroscopy. In addition, it was found from high-resolution transmission electron microscopy study that there are formed no surface oxide layers on the surface of alkanethiol coated Cu powders.

Low Temperature Synthesis of BaCeO3 Nano Powders by the Citrate Process (Citrate Process를 이용한 BaCeO3 나노 분말의 저온 합성)

  • Lee, Dong-Wook;Won, Jong-Han;Joo, Kyoung;Kim, Chang-Yeoul;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.604-609
    • /
    • 2002
  • Nanosized $BaCeO_3$ powders with the stoichiometric composition of a molecular level were synthesized by the citrate process based on the Pechini method. Polymeric precursor was formed by use of citric acid and ethylen glycol, as chelating agent of metal ions and reaction medium, respectively. Single phase orthorhombic structured $BaCeO_3$powders, about 100 nm sized and uniform shaped were obtained through the calcination of the polymeric precursor at $900^{\circ}C$ for 4 h. Extremely small quantities of carbonate ions($CO_^{2-}$) were completely decomposed at over $1100^{\circ}C$. The mean size of the powders was increased twice, however, it has very uniform distribution in its size and shape.

NO2 Sensing Characteristics of WO3 Thick Film Sensors Using Nanosized WO3 Powders Prepared by Sol-Precipitation Process (Sol-Precipitation법으로 제조된 WO3 나노분말을 이용한 후막 센서의 NO2 감지 특성)

  • Ryu, Hyun-Wook;Park, Kyung-Hee;Kim, In-Chun;Hong, Kwang-Joon;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.930-934
    • /
    • 2002
  • Nanosized $WO_3$ powders were synthesized by the sol-precipitation process using $WCl_{6}$ as the starting material, ethanol as a solvent and $NH_4$OH solution as a precipitant, followed by a washing-drying treatment and calcination. The effects on the powder crystallinity and microstructure of calcination temperature were investigated with XRD and FE-SEM. The $WO_3$ powders calcined at $500^{\circ}C$ and $700^{\circ}C$ showed good crystallinity and their mean particle size was 30nm and 70nm, respectively. These powders were used for the preparation of pastes which were printed as thick films on alumina substrates with comb-type Pt electrodes. The particle size strongly influenced the $NO_2$ gas sensing property of the thick films. A significant reduction in the $NO_2$ sensitivity was observed for the film prepared from larger particle size, having thus a larger grain size. For the film having a smaller grain size, on the other hand, the higher $NO_2$ sensitivity was observed and the sensitivity increased with $NO_2$ concentration.

Fabrication of Y2O3 doped ZrO2 Nanopowder by Reverse Micelle and Sol-Gel Processing

  • Kim, Hyun-Ju;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.568-572
    • /
    • 2011
  • The preparation of $Y_2O_3$-doped $ZrO_2$ nanoparticles in Igepal CO-520/cyclohexane reverse micelle solutions is studied here. In this work, we synthesized nanosized $Y_2O_3$-doped $ZrO_2$ powders in a reverse micelle process using aqueous ammonia as the precipitant. In this way, a hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a microemulsion consisting of cyclohexane as the oil phase, with poly (oxyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by thermogravimetrydifferential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The crystallite size was found to nearly identical with an increase in the water-to-surfactant (R) molar ratio. A FTIR analysis was carried to monitor the elimination of residual oil and surfactant phases from the microemulsion-derived precursor and the calcined powder. The average particle size and distribution of the synthesized $Y_2O_3$-doped $ZrO_2$ were below 5 nm and narrow, respectively. The TG-DTA analysis showed that the phase of the $Y_2O_3$-doped $ZrO_2$ nanoparticles changes from the monoclinic phase to the tetragonal phase at temperatures close to $530^{\circ}C$. The phase of the synthesized $Y_2O_3$-doped $ZrO_2$ when heated to $600^{\circ}C$ was tetragonal $ZrO_2$.

Trend of Ceramic Nano Pigments (세라믹 나노 안료의 동향)

  • Yu, Ri;Kim, YooJin
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.256-268
    • /
    • 2019
  • Ceramic nano pigments have attracted much interest owing to recent demand for nontoxic, heavy metal-free pigments. In general, ceramic pigments must possess thermal stability at high temperature, however nanosized powder easily undergoes aggregation at high temperature, and its color turns. serveral groups have focused on to minimize agglomeration and oxidation, a core-shell structure with a silica coating is suggested. In this review, we introduce the reported the trend of nano-ceramic powders and we summarized method improve color and physical properties throuth morphology control and ceramic coating technology.

THERMAL PLASMA SYNTHESIS OF NANO-SIZED POWDERS

  • Seo, Jun-Ho;Hong, Bong-Guen
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.9-20
    • /
    • 2012
  • A brief review on the thermal plasma synthesis of nano-sized powders is presented according to the application materials, such as, metals, ceramics, glasses, carbonaceous materials and other functional composites, such as, supported metal catalyst and core-shell structured nano materials. As widely adopted plasma sources available for thermal plasma synthesis of nanosized powders, three kinds of plasma torches, such as transferred and non-transferred DC and RF plasma torches, are introduced with the main features of each torch system. In the basis of the described torch features and the properties of suggested materials, application results including synthesis mechanism are reviewed in this paper.