Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.10.568

Fabrication of Y2O3 doped ZrO2 Nanopowder by Reverse Micelle and Sol-Gel Processing  

Kim, Hyun-Ju (School of Nano & Advanced Material Eng., Col. of Eng., Changwon National Univ.)
Bae, Dong-Sik (School of Nano & Advanced Material Eng., Col. of Eng., Changwon National Univ.)
Publication Information
Korean Journal of Materials Research / v.21, no.10, 2011 , pp. 568-572 More about this Journal
Abstract
The preparation of $Y_2O_3$-doped $ZrO_2$ nanoparticles in Igepal CO-520/cyclohexane reverse micelle solutions is studied here. In this work, we synthesized nanosized $Y_2O_3$-doped $ZrO_2$ powders in a reverse micelle process using aqueous ammonia as the precipitant. In this way, a hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a microemulsion consisting of cyclohexane as the oil phase, with poly (oxyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by thermogravimetrydifferential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The crystallite size was found to nearly identical with an increase in the water-to-surfactant (R) molar ratio. A FTIR analysis was carried to monitor the elimination of residual oil and surfactant phases from the microemulsion-derived precursor and the calcined powder. The average particle size and distribution of the synthesized $Y_2O_3$-doped $ZrO_2$ were below 5 nm and narrow, respectively. The TG-DTA analysis showed that the phase of the $Y_2O_3$-doped $ZrO_2$ nanoparticles changes from the monoclinic phase to the tetragonal phase at temperatures close to $530^{\circ}C$. The phase of the synthesized $Y_2O_3$-doped $ZrO_2$ when heated to $600^{\circ}C$ was tetragonal $ZrO_2$.
Keywords
$Y_2O_3$ doped $ZrO_2$; nanopowders; reverse micelle; sol-gel process;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. Fang, J. Wang, S. -C. Ng, C. -H. Chew and L. M. Gan, Nanostruct. Mater., 8, 499 (1997).   DOI   ScienceOn
2 D. S. Bae, B. I. Kim and K. S. Han, Mater. Sci. Forum, 510-511, 786 (2006).   DOI
3 B. C. H. Steele, J. Power Sourc., 49, 1 (1994).   DOI   ScienceOn
4 K. Foger and S. P. S. Badwal, Mater. Forum, 21, 187 (1997).
5 F. T. Ciacchi, K. M. Crane and S. P. S. Badwal, Solid State Ionics, 73, 49 (1994).   DOI   ScienceOn
6 H. Teterycz, R. Klimkiewicz and M. Laniecki, Appl. Catal. Gen., 249, 313 (2003).   DOI   ScienceOn
7 J. M. Calderon-Moreno and M. Yoshimura, Solid State Ionics, 154-155, 125 (2002).   DOI   ScienceOn
8 T. Yamaguchi, Catal. Today, 20, 199 (1994).   DOI   ScienceOn
9 D. S. Bae, S. W. Park, K. S. Han and J. H. Adair, Met. Mater. Int., 7, 399 (2001).   DOI
10 J. D. A. Bellido and E. M. Assaf, Appl. Catal. Gen., 352, 179 (2009).   DOI   ScienceOn
11 M. P. Pileni, Structure and Reactivity in Reverse Micelles, p. 25, Elsevier, Amsterdam (1989).
12 B. K. Paul and S. P. Moulik, J. Dispersion Sci. Technol., 18, 301 (1997).   DOI   ScienceOn
13 K. Osseo-Asare and F. J. Arriagada, Ceram. Trans., 12, 3 (1990).
14 M. P. Pileni, J. Phys. Chem., 97, 6961 (1993).   DOI   ScienceOn
15 M. Yoshida, M. Lal, N. D. Kumar and P. N. Prasad, J. Mater. Sci., 32, 4047 (1997).   DOI
16 D. Zhang, L. Qi, J. Ma and H. Cheng, J. Mater. Chem., 12, 3677 (2002).   DOI   ScienceOn
17 Ph. Monnoyer, A. Fonseca and J. B. Nagy, Colloid. Surface. Physicochem. Eng. Aspect., 100, 233 (1995).   DOI   ScienceOn
18 T. Li, J. Moon, A. A. Morrone, J. J. Mecholsky, D. R. Talham and J. H. Adair, Langmuir, 15, 4328 (1999).   DOI   ScienceOn
19 Y. C. Zhou and M. N. Rahaman, J. Mater. Res., 8, 1680 (1993).   DOI
20 H. Hahn, J. Logas and R. S. Averback, J. Mater. Res., 5, 609 (1990).   DOI
21 E. C. Subbarao and H. S. Maiti, Solid State Ionics, 11, 317 (1984).   DOI   ScienceOn