Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.5.414

Austenite Stability of Sintered Fe-based Alloy  

Choi, Seunggyu (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Seo, Namhyuk (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Jun, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Son, Seung Bae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Publication Information
Journal of Powder Materials / v.27, no.5, 2020 , pp. 414-419 More about this Journal
Abstract
In the present study, we investigated the austenite stability of a sintered Fe-based nanocrystalline alloy. The volume fraction of austenite was measured based on the X-ray diffraction data of sintered Fe-based nanocrystalline alloys, which were prepared by high-energy ball milling and spark plasma sintering. The sintered alloy samples showed a higher volume fraction of austenite at room temperature as compared to the equilibrium volume fraction of austenite obtained using thermodynamic calculations, which resulted from the nanosized crystalline structure of the sintered alloy. It was proved that the austenite stability of the sintered Fe-based alloy increased with a rise in the amount of austenite stabilizing elements such as Mn, Ni, and C; however, it increased more effectively with a decrease in the actual grain size. Furthermore, we proposed a new equation to predict the martensite starting temperature for sintered Fe-based alloys.
Keywords
Austenite stability; Nanocrystalline; Fe-based alloy; Martensite start temperature;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. Chipman: Met. Trans., 3 (1972) 57.
2 H. K. D. H Bhadeshia: Steels microstructure and properties, 3rd ed. Elsevier, (2013).
3 G. S. Sun, L. X. Du, J. Hu and R. D. K. Misra: Mater. Sci. Eng. A, 709 (2018) 254.   DOI
4 Y. H. Kim, J. H. Kim, T. H. Hwang, J. Y. Lee and C. Y. Kang: Met. Mater. Int., 21 (2015) 485.   DOI
5 B. C. De cooman: Curr. Opin. Solid State Mater. Sci., 8 (2004) 285.   DOI
6 Y. Sakuma, O. Matsumura and H. Takechi: Mater. Trans. A, 22 (1991) 489.   DOI
7 J. Chiang, J. D. Boyd and A. K. Pilkey: Mater. Sci. Eng. A, 638 (2015) 132.   DOI
8 H. Hermawan, H. Alamdari, D. Mantovani and D. Dube: Powder Metal., 51 (2008) 38.   DOI
9 S. J. Oh, B. C. Kim, M. C. Suh, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 64 (2019) 863.
10 D. Park, S. J. Oh, I. J. Shon and S. J. Lee: Arch. Metall. Mater. 63 (2018) 1479.
11 V. Hays, R. Marchand, G. Saindrenan and E. Gaffet: Nanostruct. Mater., 7 (1996) 411.   DOI
12 S. Lee, S. J. Lee, S. S. Kumar, K. Lee and B. C. De Cooman: Metal. Mater. Trans. A, 42 (2011) 3638.   DOI
13 M. Eskandari, A. Najafizadeh and A. Kermanpur: Mater. Sci. Eng. A, 519 (2009) 46.   DOI
14 S. Choi, J. Jeon, N. Seo, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1001.
15 S. J. Oh, D. Park, K. Kim, I. J. Shon and S. J. Lee: Mater. Sci. Eng. A, 725 (2018) 382.   DOI
16 S. J. Oh, J. Jun, I. J. Shon and S. J. Lee: J. Korean Powder Metall. Inst., 26 (2019) 389.   DOI
17 G. K. Williamson, W. H. Hall: Acta Metall., 1 (1953) 22.   DOI
18 K. W. Andrews: JISI., 203 (1965) 721.
19 S. J. Lee and K. S. Park: Metal. Mater. Trans. A, 44 (2013) 3423.   DOI
20 S. J. Oh, I. J. Shon and S. J. Lee: J. Korean Powder Metall. Inst., 25 (2018) 126.   DOI
21 D. P. Koistinen and R. E. Marburger: Acta Metall., 7 (1959) 59.   DOI