Browse > Article
http://dx.doi.org/10.5516/NET.77.2012.002

THERMAL PLASMA SYNTHESIS OF NANO-SIZED POWDERS  

Seo, Jun-Ho (High Enthalpy Plasma Research Center, Chonbuk National University)
Hong, Bong-Guen (High Enthalpy Plasma Research Center, Chonbuk National University)
Publication Information
Nuclear Engineering and Technology / v.44, no.1, 2012 , pp. 9-20 More about this Journal
Abstract
A brief review on the thermal plasma synthesis of nano-sized powders is presented according to the application materials, such as, metals, ceramics, glasses, carbonaceous materials and other functional composites, such as, supported metal catalyst and core-shell structured nano materials. As widely adopted plasma sources available for thermal plasma synthesis of nanosized powders, three kinds of plasma torches, such as transferred and non-transferred DC and RF plasma torches, are introduced with the main features of each torch system. In the basis of the described torch features and the properties of suggested materials, application results including synthesis mechanism are reviewed in this paper.
Keywords
Thermal Plasma; Torch; Nano Powder; In-flight; Arc Discharge;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 K. P. Sreekumar, M. Vijay, T. K. Thiyagarajan, K. Krishnan and P. V. Ananthapadmanabhan, "Reactive Plasma Synthesis of Nanocrystalline Ceramic Oxides," J. Phys.: Conf. Ser., 208 012123 (2010).   DOI
2 S. M. Oh and D. W. Park, "Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet," Korean J. Chem. Eng., 17(3), 299 (2000)   과학기술학회마을   DOI   ScienceOn
3 J. Y. Guo, F. Gitzhofer, M. I. Boulos, "Induction plasma synthesis of ultrafine SiC powders from silicon and $CH_{4}$," J. Mater. Sci., 30, 5589 (1995).   DOI   ScienceOn
4 F. Gitzhofer, "Induction plasma synthesis of ultrafine SiC," Pure & Appl. Chem., 68, 1113 (1996).   DOI   ScienceOn
5 L. Tong and R. G. Reddy, "Synthesis of titanium carbide nano-powders by thermal plasma," Scripta Mater., 52, 1253 (2005).   DOI   ScienceOn
6 E. Bouyer, M. Muller, R. H. Henne and G. Schiller, "Thermal plasma processing of nanostructured Si-based ceramic materials," J. Nanopar. Res., 3, 373 (2001)
7 M. Leparoux, C. Schreuders, J. W. Shin and S. Siegmann, "Induction Plasma Synthesis of Carbide Nanopowders," Adv. Eng. Mater., 7, 349 (2005).   DOI   ScienceOn
8 H. Ahn, M. Hur and S. H. Hong, "Synthesis of ultra-fine powders of aluminum nitride by DC plasma spray," J. Korean Surface Technology, 29(6), 73 (1996) (Korean)
9 S. M. Oh and D. W. Park, "Preparation of AlN fine powder by thermal plasma processing," Thin Solid Films, 316, 189 (1998)   DOI   ScienceOn
10 Ed. by R. d'Agostino, P. Favia, Y. Kawai, H. Ikegami, N. Sato and F. Arefi-Khonsari, Advanced Plasma Technology, Wiley-VCH GmbH & CO., Weinheim, 2008.
11 T. W. Ebbensen and P. M. Ajayan, "Large-scale synthesis of carbon nanotubes," Nature, 358, 220 (1992).   DOI
12 S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, 363, 603 (1993).   DOI   ScienceOn
13 Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow and S. Iijima, "Mass production of single-wall carbon nanotubes by the arc plasma jet method," Chem. Phys. Lett. 323, 580 (2000).   DOI   ScienceOn
14 Z. Shi, Y. Lian, F. H. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue and S. L. Zhang, "Large scale synthesis of single-wall carbon nanotubes by arc-discharge method," J. Phys. Chem. Solids, 61, 1031 (2000).   DOI   ScienceOn
15 S.I. Choi, J.S. Nam, J.I. Kim, T.H. Hwang, J.H. Seo and S.H. Hong, "Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma," Thin Solid Films, 506- 507, 244 (2006)   DOI
16 M. Bystrzejewski, A. Huczko, H. lange, W. W. PLotczyk, R. Stankiewicz, T. Pichler, T. Gemming and M.H.Rummeli, "A continuous synthesis of carbon nanotubes by dc thermal plasma jet," Appl. Phys. A, 91, 223 (2008)   DOI   ScienceOn
17 K. S. Kim, A. Moradian, J. Mostaghimi, Y. Alinejad, A. Shahverdi, B. Simard and G. Soucy, "Synthesis of Single- Walled Carbon Nanotubes by Induction Thermal Plasma," Nano Res., 2,800 (2009)   DOI   ScienceOn
18 K. S. Kim, G. Cota-Sanchez, C. T. Kingston, M. Imris, B. Simard and G. Soucy, "Large-scale production of singlewalled carbon nanotubes by induction thermal plasma," J. Phys. D: Appl. Phys., 40, 2375 (2007)   DOI   ScienceOn
19 B. Geir and M. Homer, Plasma preparation of Carbon Balck, US Patent 3409403 (1968).
20 W. R. Norman, Production of Carbon Black Using Plasma-Heated Nitrogen, US Patent 3409403 (1969).
21 L. Fulcheri, N. Probst, G. Flamant, F. Fabry, E. Grivei and X. Bourrat, "Plasma processing: A step toward the production of new grades of carbon black," Carbon, 40, 169 (2002).   DOI   ScienceOn
22 T. Ishigaki, Y. Bando, Y. Moriyoshi, and M. I. Boulos, "Deposition from the Vapor Phase During the Induction Plasma Treatment of Alumina Powders," J. Mater. Sci., 28, 4223 (1993).   DOI   ScienceOn
23 D. Harbec, F. Gitzhofer and A. Tagnit-Hamou, "Induction plasma synthesis of nanometric spheroidized glass powder for use in cementitious materials," Powder Technol., 214, 356 (2011)   DOI   ScienceOn
24 P. Bushier, H. Schubert, J. Uhlenbusch, and M. Weiss, "Evaporation of Zirconia Powders in a Thermal Radio- Frequency Plasma," J. Thermal Spray Technol., 10, 666 (2001)   DOI   ScienceOn
25 K. Kawajiri, J. H. Seo, N. Sato, S. H. Hong, and H. Nishiyama, "In-Flight Treatment of Titanium Dioxide Nano Particles Using a DC-RF Hybrid Plasma Flow System"; pp. 32 - 33 in CD-Proceedings of 17th International Symposium on Plasma Chemistry, Toronto, Canada, August 7 - 12, 2005, Edited by J. Mostaghimi. International Plasma Chemistry Society
26 H. Nishiyama, M. Onodera, J. Igawa and T. Nakajima, "Characterization of In-Flight Processing of Alumina Powder Using a DC-RF Hybrid Plasma Flow System at Constant Low Operating Power," J. Thermal Spray Technol., 18 (4), 593 (2009)   DOI   ScienceOn
27 B. M. Goortani, N.Y. Mendoza-Gonzalez and P. Proulx, "Synthesis of $SiO_{2}$ Nanoparticles in RF Plasma Reactors: Effect of Feed Rate and Quench Gas Injection," Int. J. Chem. React. Eng., 4, A33 (2006).
28 B. Bora, N. Aomoa R. K. Bordoloi, D. N. Srivastava, H. Bhuyan, A.K. Das and M. Kakati, "Free-flowing, transparent g-alumina nanoparticles synthesized by a supersonic thermal plasma expansion process," Curr. Appl. Phys. doi:10.1016 /j.cap.2011.12.001 (2012)
29 M. Kakati, B. Bora, S. Sarma, B.J. Saikia, T. Shripathi, U. Deshpande, A. Dubey, G. Ghosh and A.K. Das, "Synthesis of titanium oxide and titanium nitride nanoparticles with narrow size distribution by supersonic thermal plasma expansion," Vacuum, 82, 833 (2008)   DOI   ScienceOn
30 B. Bora, B.J. Saikia, C. Borgohain, M. Kakati and A.K. Das, "Numerical investigation of nanoparticle synthesis in supersonic thermal plasma expansion," Vacuum, 85, 283 (2010)   DOI   ScienceOn
31 P. Proulx, J. Mostaghimi and M. I. Boulos, "Plasma - Particle Interaction Effects in Induction Plasma Modeling Under Dense Loading Conditions," Int. J. Heat Mass Transfer, 28, 1327 (1985).   DOI   ScienceOn
32 P. Proulx, J. Mostaghimi, and M. I. Boulos, "Heating of Powders in r.f. Inductively Coupled Plasma under Dense Loading Conditions," Plasma Chem. Plasma Process., 7, 29 (1987).   DOI   ScienceOn
33 www.tekna.com
34 M. Shigeta, T. Watanabe and H. Nishiyama, "Numerical investigation for nano-particle synthesis in an RF inductively coupled plasma," Thin Solid Films, 457, 192 (2004).   DOI   ScienceOn
35 S. Son, M. Taheri, E. Carpenter, V. G. Harris and M. E. McHenry, "Synthesis of ferrite and nickel ferrite nanoparticles using radiofrequency thermal plasma torch," J. Appl. Phys., 91, 7589 (2002)   DOI   ScienceOn
36 J. H. Seo, D. U. Kim, J. S. Nam, S. H. Hong, S. B. Sohn and S. M. Song, "Radio Frequency Thermal Plasma Treatment for Size Reduction and Spheroidization of Glass Powders Used in Ceramic Electronic Devices," J. Am. Ceram. Soc., 90, 1717 (2007).
37 D. Bernardi, V. Colombo, E. Ghedini, A. Mentrelli and T. Trombetti, "3-D Numerical Analysis of Powder Injection in Inductively Coupled Plasma Torches" IEEE Trans. Plasma Sci., 33, 424 (2005).   DOI
38 R. Ye, P. Proulx and M. I. Boulos, "Particle Turbulent Dispersion and Loading Effects in an Inductively Coupled Radio Frequency Plasma," J. Phys. D, Appl. Phys., 33, 2154 (2000).   DOI   ScienceOn
39 M. Rahmane, G. Soucy and M. I. Boulos, "Mass transfer in induction plasma reactors," Int. J. Heat Mass Transfer, 32, 2035 (1994).
40 N.Y. Mendoza-Gonzalez, B.M. Goortani and P. Proulx, "Numerical simulation of silica nanoparticles production in an RF plasma reactor: effect of quench," Mater. Sci. Eng. C, 27, 1267 (2007)
41 N.Y. Mendoza-Gonzalez, M.El. Morsli and P. Proulx, "Production of Nanoparticles in Thermal Plasmas: A Model Including Evaporation, Nucleation, Coalescence and Fractal Aggregation" J. Therm. Spray Technol., 17, 533 (2008)   DOI   ScienceOn
42 A. M. Fudoligh, H. Nogami and J. Yagi, "Prediction of generation rates in 'reactive arc plasma' ultrafine powder production process, ISIJ Int., 37, 641 (1997)   DOI   ScienceOn
43 M. Uda, S. Ohno and T. Hoshi, Process for production fine metal particles, US Patent 4376740.
44 M. Uda, S. Ohno and H. Okuyama, Process for production particles of ceramic, US Patent 4889665.
45 T. Araya, Y. Ibaraki, Y. Endo, S. Hioki and M. Kanamaru, Arc apparatus for producing ultrafine particles, US Patent 4732369.
46 M. Shigeta and A. B. Murphy, "Thermal plasmas for nanofabrication," J. Phys. D: Appl. Phys., 44, 174025 (2011)   DOI   ScienceOn
47 S. H. Lee, S. M. Oh and D. W. Park, "Preparation of silver nanopowder by thermal plasma," Mater. Sci. Eng. C, 27, 1286 (2007)   DOI
48 M. Ogawa and S. Abe, Method for making ultra-fine ceramic particles, US Patent 4610857.
49 S. Kumara, V. Selvarajan, P.V.A. Padmanabhan and K.P. Sreekumar, "Spheroidization of metal and ceramic powders in thermal plasma jet: Comparison between experimental results and theoretical estimation," J. Mater. Process. Tech., 176, 87 (2006)   DOI
50 H. P. Li and E. Pfender, "Three Dimensional Modeling of the Plasma Spray Process," J. Thermal Spray Technol., 16, 245 (2007)   DOI   ScienceOn
51 S. L. Girshick, C. P. Chiu, R. Muno, C. Y. Wu, L. Yang, S. K. Singh, and P.H. McMurry, "Thermal Plasma Synthesis of Ultrafine Iron Particles," J. Aerosol Sci., 24, 367 (1993)   DOI   ScienceOn
52 M. Vardelle, C. Trassy, A. Vardelle and P. Fauchais, "Experimental Investigation of Powder Vaporization in Thermal Plasma Jets," Plasma Chem. Plasma Process., 11, 185 (1991)   DOI   ScienceOn
53 R. M. Young and E. Pfender, "Generation and Behavior of Fine Particles in Thermal Plasmas - A Review," Plasma Chem. Plasma Process., 5, 1 (1985)   DOI   ScienceOn
54 M. I. Boulos, J. Jurewicz and J. Guo, Induction plasma synthesis of nanopowders, US patent 8013269 B2.
55 J. R. Fincke, W. D. Swank, S. C. Snyder and D. C. Haggard, "Enthalpy probe performance in compressible thermal plasma jets", Rev. Sci. Instrum., 64(12), 3585 (1993).   DOI   ScienceOn
56 M. Rahmane, G. Soucy and M. I. Boulos, "Analysis of the enthalpy probe technique for thermal plasma diagnostics", Rev. Sci. Instrum., 66(6), 3424 (1995).   DOI   ScienceOn
57 S. Choi, T. H. Hwang, J. H. Seo, D. U. Kim and S. H. Hong, "Effects of Anode Nozzle Geometry on Ambient Air Entrainment Into Thermal Plasma Jets Generated by Nontransferred Plasma Torch," IEEE Trans. Plasma Sci., 32(2) (2004).
58 J. H. Park and S. H. Hong, "Optimization analysis of an inductively coupled torch for material processing by using local thermal equilibrium numerical analysis," J. Kor. Phys. Soc., 31, 753 (1997).   과학기술학회마을
59 M. Rahmane, G. Soucy and M. I. Boulos, "Diffusion phenomena of a cold gas in thermal plasma stream," J. Plasma Chem. Plasma Proces., 16, 169S (1996).
60 R. Ye, P. Proulx and M. I. Boulos, "Turbulence phenomena in the radio frequency induction plasma torch," Int. J. Heat Mass Trans., 42, 1585 (1999).   DOI   ScienceOn
61 Y. L. Lee, J. W. Joung and K. J. Lee, Method for manufacturing nickel nanoparticles, US Patent 7648556 B2.
62 Ph. Buffat and J. P. Borel, "Size effect on the melting temperature of gold partlcles," Phys. Rev. A, 13, 2287 (1976)   DOI
63 Ed. by C. Corti and R. Holliday, Gold : science and applications, CRC Press Taylor & Francis Group, New-York, 2010.
64 Ed. by D. L. Feldheim and C.A. Foss. Jr., Metal Nanoparticles : Synthesis, Characterization, and Applications, Marcel Dekker Inc., New York, Basel, 2010.
65 S. Ohno and M. Uda, "Generation rate of ultrafine metal particles in hydrogen plasma - metal reaction," J, Jpn. Insl. Met., 48, 640 (1984). (Japanese)   DOI
66 M. I. Boulos, P. Fauchais and E. Pfender, Thermal Plasmas : Fundamentals and Applications, Volume 1, Plenum Press, New York and London,1994.
67 P. Fauchais and A. Vardelle, "Thermal plasmas," IEEE Trans. Plasma Sci., 25, 1258 (1997).   DOI   ScienceOn
68 Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin Heidelberg,1991.
69 E. Pfender, "Thermal Plasma Technology: Where Do We Stand and Where Are We Going?," Plasma Chem. Plasma Process., 19(1), 1 (1999)   DOI   ScienceOn
70 M. I. Boulos, "The inductively coupled R.F. (radio frequency) plasma," Pure & Appl. Chem. 57, 1321 (1985).   DOI   ScienceOn
71 J. Heberlein, "New approaches in thermal plasma technology," Pure & Appl. Chem., 74(3), 327 (2002).   DOI   ScienceOn
72 B. Pateyron, M. F. Elchinger, G. Delluc and P. Fauchais, "Sound Velocity in Different Reacting Thermal Plasma Systems," Plasma Chem. Plasma Process., 16(1), 39 (1996).   DOI   ScienceOn
73 T. Yoshida, "The future of thermal plasma processing," Mater. T. JIM, 31(1), 1 (1990)   DOI
74 P. R. Taylor and S. A. Pirzada, "Thermal Plasma Processing of Materials: A Review," Adv. Perform. Mater., 1, 35 (1994).   DOI   ScienceOn
75 P. Fauchais, A. Vardelle and A. Denoirjean, "Reactive thermal plasmas: ultrafine particle synthesis and coating deposition," Surf. Coat. Tech. 97, 66 (1997).   DOI
76 D. Vollath, "Plasma synthesis of nanopowders," J. Nanopart. Res., 10, 39 (2008).   DOI   ScienceOn
77 E. Ruckenstein and Y. H. Hu, "Carbon dioxide reforming of methane over nickel/ alkaline earth metal oxide catalysts," Appl. Catal. A: Gen., 133, 149 (1995).   DOI   ScienceOn
78 T. Oku, T. Kusunose, T. Hirata, R. Hatakeyama, N. Sato, K. Niihara and K. Suganuma, "Formation and structure of Ag, Ge and SiC nanoparticles encapsulated in boron nitride and carbon nanocapsules," Diam. Relat. Mater., 9, 911 (2000)   DOI   ScienceOn
79 M. Y. Lee, J. S. Kim and J. H. Seo, "RF thermal plasma synthesis of nano-sized IZTO (Indium Zinc Tin Oxide) powders," Thin Solid Films, (submitted)
80 Y. H. Hu, "Solid-solution catalysts for $CO_{2}$ reforming of methane," Catal. Today, 148, 206 (2009)   DOI   ScienceOn
81 B. C. Enger, R. Lodeng and A. Holman, "A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts," Appl. Catal. A: Gen., 346, 1 (2008).   DOI
82 K.O. Christenson, D. Chen, R. Lodeng and A. Holman, "Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming," Appl. Catal. A: Gen., 314, 9 (2006)   DOI   ScienceOn
83 K. Nishimura, T. Fujii, K. Yubuta and S. Shinozaki, Process for producing oxide coated fine metal particles, US Patent 6582763 B1
84 J. H. Seo, M. Y. Lee and J. S. Kim, "Preparation of NiO-MgO solid solution nano-catalysts for partial oxidation of methane by RF (Radio Frequency) thermal plasma," Surf. Coat. Tech. (submitted).
85 H. Zea, C. K. Chen, K. Lester, A. Phillips, A. Daty, I. Fonseca and J. Phillips, "Plasma torch generation of carbon supported metal catalysts," Catal. Today, 89, 237 (2004)   DOI
86 G. P. Vissokov, "Some peculiarities of nano-dispersed catalysts synthesized or regenerated in an arc plasma conditions," Catal. Today, 89, 245 (2004)   DOI
87 K. Nishimura, T. Fujii, K. Yubuta and S. Shinozaki, Fine glass particle containing embedded oxide and process for producing the same, US Patent 6578381 B2
88 Y. Saito, "Nanoparticles and filled nanocapsules," Carbon, 33, 979 (1995)   DOI   ScienceOn
89 Z. Wei, L. Liu, H. Yang, C. Zhang and W. Feng, "Characterization of carbon encapsulated Fe-nanoparticles prepared by confined arc plasma," Trans. Nonferrous Met. Soc. China, 21, 2026 (2011)   DOI   ScienceOn
90 F. Fabry. G. Flamant and L. Fulcheri, "Carbon black processing by thermal plasma. analysis of the particle formation mechanism," Chem. Eng. Sci., 56, 2123 (2001).   DOI   ScienceOn
91 K. S. Kim, J. H. Seo, J. S. Nam, W. T. Ju and S. H. Hong, "Production of Hydrogen and Carbon Black by Methane Decomposition Using DC-RF Hybrid Thermal Plasmas," IEEE Trans. Plasma Sci. 33(2), 813 (2005).   DOI
92 S. I. Choi, J. S. Nam and J. H. Seo, "Formation of carbon black by thermal plasma decomposition of methane," J. Environmental & Thermal Eng., 8(3), 1 (2011) (Korean)