Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.6.409

Fabrication of Core-Shell Structured Ni-Based Alloy Nanopowder by Electrical Wire Explosion Method  

Lee, A-Young (Advanced Functional Materials R&D Group, Korea Institute of Industrial Technology)
Lee, Gwang-Yeob (Advanced Analysis Center, Korea Institute of Science and Technology)
Oh, Hye-Ryeong (Advanced Functional Materials R&D Group, Korea Institute of Industrial Technology)
Kim, Hyeon-Ah (Advanced Functional Materials R&D Group, Korea Institute of Industrial Technology)
Kim, Song-Yi (Advanced Functional Materials R&D Group, Korea Institute of Industrial Technology)
Lee, Min-Ha (Advanced Functional Materials R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of Powder Materials / v.23, no.6, 2016 , pp. 409-413 More about this Journal
Abstract
Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.
Keywords
Electrical wire explosion; Core-shell structure; Nanopowders; Ni-Fe; Grain size;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Cho, Y. W. Choi, C. Kang and G. W. Lee: Appl. Phys. Lett., 91 (2007) 141501.   DOI
2 W. B. Kim, J. S. Park, C. Y. Suh, J. C. Lee, J. H. Kim and Y. J. Oh: J. Korean Powder Metall. Inst., 14 (2007) 108.   DOI
3 W. Jiang and K. Yatsui: IEEE Trans. Plasma Sci., 26 (1998) 1498.   DOI
4 C. Cho, Y. W. Choi and W. Jiang: J. Korean Phys. Soc., 47 (2005) 987.
5 C. Cho, K. Murai, T. Suzuki, H. Suematsu, W. Jiang and K. Yatsui: IEEE Trans. Plasma Sci., 32 (2004) 2062.   DOI
6 C. H. Cho, S. H. Park, Y. W. Choi and B. G. Kim: Surf. Coat. Technol., 201 (2007) 4847.   DOI
7 Q. Wang, H. Yang, J. Shi and G. Zou: Mater. Sci. Eng. A Struct. Mater., 307 (2001) 190.   DOI
8 W. Kim, J. S. Park, C. Y. Suh, H. Chang and J. C. Lee: Mater. Lett., 61 (2007) 4259.   DOI
9 Y. S. Kwon, V. V. An, A. P. Ilyinb and D. V. Tikhonov: Mater. Lett., 61 (2007) 3247.   DOI
10 A. L. Kustov, A. M. Frey, K. E. Larsen, T. Johannessen, J. K. Norskov and C. H. Christensen: Appl. Catal. A Gen., 320 (2007) 98.   DOI
11 X. Y. Qin, J. S. Lee, J. G. Nam and B. S. Kim: Nanostruct. Mater., 11 (1999) 383.   DOI
12 L. H. Bac, Y. S. Kwon, J. S. Kim, Y. I. Lee, D. W. Lee and J. C. Kim: Mater. Res. Bull., 45 (2010) 352.   DOI
13 G. H. Park, G. Y. Lee, H. A. Kim, A. Y. Lee, H. R. Oh, S. Y. Kim, D. H. Kim and M. H. Lee: Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 212 (2016) 24.   DOI
14 Y. R. Uhm, W. W. Kim, S. J. Kim, C. S. Kim and C. K. Rhee: J. Appl. Phys., 93 (2003) 7196.   DOI
15 C. Cho, Y. Kinemuchi, H. Suematsu, W. Jiang and K. Yatsui: Jpn. J. Appl. Phys., 42 (2003) 1763.   DOI