DOI QR코드

DOI QR Code

Effect of Reaction Parameters on Silica Nanoparticles Synthesized by Sol-gel Method

졸-겔법에 의한 단분산 실리카 나노입자 합성에 미치는 반응변수의 영향

  • Lim, Young-Hyun (Department of Material Engineering, Pusan National University) ;
  • Kim, Do Kyung (Department of Medical Science, Konyang University) ;
  • Jeong, Young-Keun (Graduate School of Convergence Science, Pusan National University)
  • Received : 2016.11.22
  • Accepted : 2016.12.03
  • Published : 2016.12.28

Abstract

The sol-gel method is the simplest method for synthesizing monodispersed silica particles. The purpose of this study is to synthesize uniform, monodisperse spherical silica nanoparticles using tetraethylorthosilicate (TEOS) as the silica precursor, ethanol, and deionized water in the presence of ammonia as a catalyst. The reaction time and temperature and the concentration of the reactants are controlled to investigate the effect of the reaction parameters on the size of the synthesized particles. The size and morphology of the obtained silica particles are investigated using transmission electron microscopy and particle size analysis. The results show that monodispersed silica particles over a size range of 54-504 nm are successfully synthesized by the sol-gel method without using any additional process. The nanosized silica particles can be synthesized at higher TEOS/$H_2O$ ratios, lower ammonia concentrations, and especially, higher reaction temperatures.

Keywords

References

  1. G. Herbert: J. Eur. Ceram. Soc., 14 (1994) 205. https://doi.org/10.1016/0955-2219(94)90088-4
  2. N. A. Zainal, S. R. A. Shukor, H. A. A. Wab and K. A. Razak: Chem. Eng. Trans., 32 (2013) 2245.
  3. T. Sugimoto: Fine Particles: Synthesis, Characterization, and Mechanisms of Growth, CRC Press, New York (2000) 126.
  4. K. S. Rao, K. El-Hami, T. Kodaki, K. Matsushige and K. Makino: J. Colloid Interface Sci., 289 (2005) 125. https://doi.org/10.1016/j.jcis.2005.02.019
  5. I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, M. A. Bakar, R. Adnan and C. K. Chee: Colloids Surf. A Physicochem. Eng. Asp., 294 (2007) 102. https://doi.org/10.1016/j.colsurfa.2006.08.001
  6. S. Tabatabaei, A. Shukohfar, R. Aghababazadeh, and A. Mirhabibi: J. Phys. Conf. Ser., 26 (2006) 371. https://doi.org/10.1088/1742-6596/26/1/090
  7. G. H. Bogush, M. A. Tracy and C. F. Zukoski IV: J. Non Cryst. Solids, 104 (1988) 95. https://doi.org/10.1016/0022-3093(88)90187-1
  8. H. N. Azlina, J. N. Hasnidawani, H. Norita and S. N. Surip: Acta Phys. Pol. B Proc. Suppl., 129 (2016) 842.
  9. I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, M. A. Bakar, R. Adnan and C. K. Chee: Ceram. Int., 32 (2006) 691. https://doi.org/10.1016/j.ceramint.2005.05.004
  10. L. P. Singh, S. K. Agarwal, S. K. Bhattacharyya, U. Sharma and S. Ahalawat: Nanomater. Nanotechnol., 1 (2011) 44.
  11. D. L. Green, J. S. Lin, Y. F. Lam, M. Z. C. Hu, D. W. Schaefer and M. T. Harris: J. Colloid Interface Sci., 266 (2003) 346. https://doi.org/10.1016/S0021-9797(03)00610-6
  12. I. A. M. Ibrahim, A. A. F. Zikry and M. A. Sharaf: J. Am. Sci., 6 (2010) 985.
  13. C. J. Brinker and G. W. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego (1990) 97.
  14. T. Matsoukas and E. Gulari: J. Colloid Interface Sci., 124 (1988) 252. https://doi.org/10.1016/0021-9797(88)90346-3
  15. S. K. Park, K. D. Kim and H. T. Kim: Colloids Surf. A Physicochem. Eng. Asp., 197 (2002) 7. https://doi.org/10.1016/S0927-7757(01)00683-5