Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.3.220

Fabrication and Characterization of Highly Reactive Al/CuO Nano-composite using Graphene Oxide  

Lim, YeSeul (Agency for Defence Development, The 4th R&D Institute)
Publication Information
Journal of Powder Materials / v.26, no.3, 2019 , pp. 220-224 More about this Journal
Abstract
The aluminum (Al)/copper oxide (CuO) complex is known as the most promising material for thermite reactions, releasing a high heat and pressure through ignition or thermal heating. To improve the reaction rate and wettability for handling safety, nanosized primary particles are applied on Al/CuO composite for energetic materials in explosives or propellants. Herein, graphene oxide (GO) is adopted for the Al/CuO composites as the functional supporting materials, preventing a phase-separation between solvent and composites, leading to a significantly enhanced reactivity. The characterizations of Al/CuO decorated on GO(Al/CuO/GO) are performed through scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping analysis. Moreover, the functional bridging between Al/CuO and GO is suggested by identifying the chemical bonding with GO in X-ray photoelectron spectroscopy analysis. The reactivity of Al/CuO/GO composites is evaluated by comparing the maximum pressure and rate of the pressure increase of Al/CuO and Al/CuO/GO. The composites with a specific concentration of GO (10 wt%) demonstrate a well-dispersed mixture in hexane solution without phase separation.
Keywords
Nano thermite; Aluminum-Copper(II)Oxide composite; Graphene Oxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Zhang, A. Yoshinaka and R. Ripley: 14th International Detonation Symposium, (2010) 714.
2 F. Severac, P. Alphonse, A. Esteve, A. Bancaud and C. Rossi: Adv. Funct. Mater., 22 (2012) 323.   DOI
3 D. Spitzer, M. Comet, C. Baras, V. Pichot and N. Piazzon: J. Phys. Chem. Solids, 71 (2010) 100.   DOI
4 S. H. Fischer and M. C. Grubelich: 24th International Pyrotechnics Seminar, (1998) 1.
5 G. Nachmoni and B. Natan: Combust. Sci. Technol., 156 (2000) 139.   DOI
6 R. Thiruvengadathan, S. W. Chung, S. Basuray, B. Balasubramanian, C. S. Staley, K. Gangopadhyay and S. Gangopadhyay: Langmuir, 30 (2014) 6556.   DOI
7 W. S. Hummers and R. E. Offeman: J. Am. Chem. Soc., 80 (1958) 1339.   DOI
8 R. Shende, S. Subramanian, S. Hasan, S. Apperson, R. Thiruvengadathan, K. Gangopadhyay and S. Gangopadhyay, P. Redner, D. Kapoor, S. Nicolich and W. Balas: Propellants Explos. Pyrotech., 33 (2008) 122.   DOI
9 H. M. Jeong, K. M. Choi, T. Cheng, D. K. Lee, R. Zhouc, I. W. Ock, D. J. Milliron, W. A. Goddard III and J. K. Kang: Proc. Natl. Acad. Sci. U.S.A., 112 (2015) 7914.   DOI
10 J. Y. Ahn, J. H. Kim, J. M. Kim, D. W. Lee, J. K. Park, D. Lee and S. H. Kim: Powder Technol., 241 (2013) 67.   DOI
11 Y. S. Lim, Y. J. Choi, C. K. Kim and J. H. Yoo: 2017 Korea Institute of Military Science and Technology Conference, (2017) 1014.