DOI QR코드

DOI QR Code

Fabrication of Core-Shell Structured Ni-Based Alloy Nanopowder by Electrical Wire Explosion Method

  • Lee, A-Young (Advanced Functional Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Gwang-Yeob (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Oh, Hye-Ryeong (Advanced Functional Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Hyeon-Ah (Advanced Functional Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Song-Yi (Advanced Functional Materials R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Min-Ha (Advanced Functional Materials R&D Group, Korea Institute of Industrial Technology)
  • Received : 2016.11.07
  • Accepted : 2016.11.23
  • Published : 2016.12.28

Abstract

Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.

Keywords

References

  1. C. Cho, Y. W. Choi, C. Kang and G. W. Lee: Appl. Phys. Lett., 91 (2007) 141501. https://doi.org/10.1063/1.2794724
  2. W. B. Kim, J. S. Park, C. Y. Suh, J. C. Lee, J. H. Kim and Y. J. Oh: J. Korean Powder Metall. Inst., 14 (2007) 108. https://doi.org/10.4150/KPMI.2007.14.2.108
  3. W. Jiang and K. Yatsui: IEEE Trans. Plasma Sci., 26 (1998) 1498. https://doi.org/10.1109/27.736045
  4. C. Cho, Y. W. Choi and W. Jiang: J. Korean Phys. Soc., 47 (2005) 987.
  5. C. Cho, K. Murai, T. Suzuki, H. Suematsu, W. Jiang and K. Yatsui: IEEE Trans. Plasma Sci., 32 (2004) 2062. https://doi.org/10.1109/TPS.2004.835476
  6. C. H. Cho, S. H. Park, Y. W. Choi and B. G. Kim: Surf. Coat. Technol., 201 (2007) 4847. https://doi.org/10.1016/j.surfcoat.2006.07.032
  7. Q. Wang, H. Yang, J. Shi and G. Zou: Mater. Sci. Eng. A Struct. Mater., 307 (2001) 190. https://doi.org/10.1016/S0921-5093(00)01966-3
  8. W. Kim, J. S. Park, C. Y. Suh, H. Chang and J. C. Lee: Mater. Lett., 61 (2007) 4259. https://doi.org/10.1016/j.matlet.2007.01.106
  9. Y. S. Kwon, V. V. An, A. P. Ilyinb and D. V. Tikhonov: Mater. Lett., 61 (2007) 3247. https://doi.org/10.1016/j.matlet.2006.11.047
  10. A. L. Kustov, A. M. Frey, K. E. Larsen, T. Johannessen, J. K. Norskov and C. H. Christensen: Appl. Catal. A Gen., 320 (2007) 98. https://doi.org/10.1016/j.apcata.2006.12.017
  11. X. Y. Qin, J. S. Lee, J. G. Nam and B. S. Kim: Nanostruct. Mater., 11 (1999) 383. https://doi.org/10.1016/S0965-9773(99)00193-2
  12. L. H. Bac, Y. S. Kwon, J. S. Kim, Y. I. Lee, D. W. Lee and J. C. Kim: Mater. Res. Bull., 45 (2010) 352. https://doi.org/10.1016/j.materresbull.2009.12.008
  13. G. H. Park, G. Y. Lee, H. A. Kim, A. Y. Lee, H. R. Oh, S. Y. Kim, D. H. Kim and M. H. Lee: Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 212 (2016) 24. https://doi.org/10.1016/j.mseb.2016.07.010
  14. Y. R. Uhm, W. W. Kim, S. J. Kim, C. S. Kim and C. K. Rhee: J. Appl. Phys., 93 (2003) 7196. https://doi.org/10.1063/1.1558234
  15. C. Cho, Y. Kinemuchi, H. Suematsu, W. Jiang and K. Yatsui: Jpn. J. Appl. Phys., 42 (2003) 1763. https://doi.org/10.1143/JJAP.42.1763