• 제목/요약/키워드: Nanosized $TiO_2$

검색결과 36건 처리시간 0.023초

고온 인산염 유기 전해질에서의 TiO2 나노구조 형성 원리와 응용 (A Review of Anodic TiO2 Nanostructure Formation in High-temperature Phosphate-based Organic Electrolytes: Properties and Applications)

  • 오현철;이영세;이기영
    • 공업화학
    • /
    • 제28권4호
    • /
    • pp.375-382
    • /
    • 2017
  • 전기화학 방법을 이용한 이산화티타늄 나노구조에 대한 기존 연구는 불소 이온을 함유한 전해질에서의 산화반응으로 형성된 나노튜브가 연구의 주를 이루고 있다. 최근, 불소 이온이 아닌 고온 인산염이 함유된 글리세롤계 전해질의 개발로 관련 연구가 활발히 진행되고 있다. 본 총설은 이러한 전해질을 활용하여 다양한 이산화티타늄 나노구조를 형성하는 연구 동향에 대해 다루고 있다. 새로운 양극산화법을 통해 형성된 이산화티타늄 나노구조는 기존의 나노튜브에 비하여 비표면적이 넓고 결정성과 접착력이 우수하여 여러 응용분야에 활용가치가 높다. 이에 본 총설에서는 새로운 양극산화법을 이용한 나노구조의 형성 원리, 특성에 대한 개괄적 접근 뿐만 아니라 실제 응용분야에서의 소재성능을 기존 나노튜브 구조와 비교한 결과 등을 망라하여 자세히 소개하고 있다.

Ti-Al-N과 Ti-Al-Si-N 코팅막의 상 특성 및 내산화 거동 (Phase Characterization and Oxidation Behavior of Ti-Al-N and Ti-Al-Si-N Coatings)

  • 김정욱;전준하;조건;김광호
    • 한국표면공학회지
    • /
    • 제37권3호
    • /
    • pp.152-157
    • /
    • 2004
  • Ti-Al-N ($Ti_{75}$ $Al_{25}$ N) and Ti-Al-Si-N ($Ti_{69}$ $Al_{23}$ $Si_{8}$N) coatings synthesized by a DC magnetron sputtering technique were studied comparatively with respect to phase characterization and high-temperature oxidation behavior. $Ti_{69}$ $Al_{23}$ $Si_{ 8}$N coating had a nanocomposite microstructure consisting of nanosized(Ti,Al,Si)N crystallites and amorphous $Si_3$$N_4$, with smooth surface morphology. Ti-Al-N coating of which surface $Al_2$$O_3$ layer formed during oxidation suppressed further oxidation. It was sufficiently stable against oxidation up to about $700^{\circ}C$. Ti-Al-Si-N coating showed better oxidation resistance because both surface Ab03 and near-surface $SiO_2$ layers suppressed further oxidation. XRD, GDOES, XPS, and scratch tests were performed.

Synthesis of Nanosized SnS-TiO2 Photocatalysts with Excellent Degradation Effect of TBA under Visible Light Irradiation

  • Meng, Ze-Da;Zhu, Lei;Ullah, Kefayat;Ye, Shu;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.455-461
    • /
    • 2015
  • SnS-$TiO_2$ nanocomposites are synthesized using simple, cheap, and less toxic $SnCl_2$ as the tin (II) precursor. The prepared nanoparticles are characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectra (DRS). The XRD and TEM results indicate that the prepared product has SnS nanoparticles and a grain diameter of 30 nm. The DRS demonstrate that SnS-$TiO_2$ possesses the absorption profile across the entire visible light region. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and photocatalytic effect increase with the modified SnS. Excellent catalytic degradation of Texbrite BA-L (TBA) solution is observed using the SnS-$TiO_2$ composites under visible light irradiation. It is proposed that both the strong visible light absorption and the multiple exciton excitations contribute to the high visible light photocatalytic activity.

양극산화 조건에 따른 이산화티타늄 나노튜브의 광촉매 및 광전기화학적 특성 (Photocatalytic and photoelectrocatalytic properties of anodic titanium dioxide nanotubes based on anodizing conditions)

  • 김연진;정린;이재원;유정은;이기영
    • 한국표면공학회지
    • /
    • 제56권2호
    • /
    • pp.137-146
    • /
    • 2023
  • Nanosized TiO2 has been widely investigated in photoelectrochemical or photocatalytic applications due to their intrinsic properties such as suitable band position, high photocorrosion resistance, and surface area. In this study, to achieve the high efficiency in photoelectrochemical and photocatalytic performance, TiO2 nanotubular structures were formed by anodization at various temperatures and times. The morphological and crystal structure of the anodized TiO2 nanotubes (NTs) were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The photoelectrochemical (PEC) properties and incident photon-to-current conversion efficiency (IPCE) of the TiO2 NTs were studied with different lengths and morphologies. From the detailed investigations, the optimum thickness of TiO2 nanotubes was 3 ㎛. Moreover, we found that the optimum photocatalytic pollutant removal efficiency of TiO2 nanotubes for photodegradation of Rhodamine B (RhB) under simulated solar light was 5.34 ㎛ of tube length.

염 보조 초음파 분무 열분해 공정으로 합성된 TiO2 나노입자의 특성에 열분해 온도가 미치는 영향 (Effect of Pyrolysis temperature on TiO2 Nanoparticles Synthesized by a Salt-assisted Ultrasonic Spray Pyrolysis Process)

  • 유재현;지명준;박우영;이영인
    • 한국분말재료학회지
    • /
    • 제26권3호
    • /
    • pp.237-242
    • /
    • 2019
  • In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate ($NaNO_3$) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide ($TiO_2$) particles. The added $NaNO_3$ prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing $NaNO_3$ and NaF from the secondary particles, which consist of the salts and $TiO_2$ nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized $TiO_2$ nanoparticles have a size of approximately 2-10 nm a bandgap energy of 3.1-3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized $TiO_2$ nanoparticles.

Properties of Zeolite Nanopowder Coated with Titanium Dioxide by Atomic Layer Deposition

  • Lee, Bo Kyung;Ok, Hae Ryul;Bae, Hye Jin;Kim, Hyug Jong;Choi, Byung Ho
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.149-153
    • /
    • 2016
  • Nanosized zeolites were prepared in an autoclave using tetraethoxysilane (TEOS), tetrapropylammonium hydroxide (TPAOH), and $H_2O$, at various hydrothermal synthesis temperatures. Using transmission electron microscopy and particle size analysis, the nanopowder particulate sizes were revealed to be 10-300 nm. X-ray diffraction analysis confirmed that the synthesized nanopowder was silicalite-1 zeolite. Using atomic layer deposition, the fabricated zeolite nanopowder particles were coated with nanoscale $TiO_2$ films. The $TiO_2$ films were prepared at $300^{\circ}C$ by using $Ti[N(CH_3)_2]_4$ and $H_2O$ as precursor and reactant gas, respectively. In the TEM analysis, the growth rate was ${\sim}0.7{\AA}/cycle$. Zeta potential and sedimentation test results indicated that, owing to the electrostatic repulsion between $TiO_2$-coated layers on the surface of the zeolite nanoparticles, the dispersibility of the coated nanoparticles was higher than that of the uncoated nanoparticles. In addition, the effect of the coated nanoparticles on the photodecomposition was studied for the irradiation time of 240 min; the concentration of methylene blue was found to decrease to 48%.

펄스레이저 증착법에 의한 Al2O3 입자 표면 위 TiO2 나노입자의 코팅 (Effect of deposition pressure on the morphology of TiO2 nanoparticles deposited on Al2O3 powders by pulsed laser deposition)

  • 최봉근;김소연;박철우;박재화;홍윤표;심광보
    • 한국결정성장학회지
    • /
    • 제23권4호
    • /
    • pp.167-172
    • /
    • 2013
  • 266 nm 파장을 갖는 Nd : YAG 레이저를 이용한 펄스레이저증착법(PLD)에 의해 모재인 $Al_2O_3$ 입자표면에 코팅된 $TiO_2$ 나노 입자를 제조하였다. 펄스레이저 에너지는 100 mJ/pulse로 고정하였으며, 레이저가 $TiO_2$ 타겟에 조사되는 동안 아르곤 가스를 챔버 내로 공급하였다. 이때, 압력은 $1{\times}10^{-2}Pa$에서 100 Pa로 변화시겼다. 증착된 나노 입자의 형태와 특성에 대한 증착 압력의 효과는 투과전자현미경과 에너지 분산형 X선 분광기를 이용하여 조사하였다. 모재 표면($Al_2O_3$)에 흡착된 나노 입자는 거의 구형이며 10~30 nm의 크기를 갖는다. 증착된 나노 입자의 형태는 기체 압력에 큰 영향을 받지 않는다. 그러나, 증착된 나노입자의 크기와 결정성은 기체 분압이 증가함에 따라서 증가한다. 이 방법에 의해서, 증착된 나노입자의 크기와 결정성은 기체 압력에 의해서 쉽게 조정할 수 있다.

The effect of nano-sized starting materials and excess amount of Bi on the dielectric/piezoelectric properties of 0.94[(BixNa0.5)TiO3]-0.06[BaTiO3] lead free piezoelectric ceramics

  • Khansur, Neamul Hayet;Ur, Soon-Chul;Yoon, Man-Soon
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • In an approach to acclimate ourselves torecent ecological consciousness trend, a lead-free piezoelectric material, bismuth sodium titanate (abbreviated as BNT) based bismuth sodium barium titanate (abbreviated as BNT-BT), was considered as an environment-friendly alternative for a lead based piezoelectric system. Ceramic specimens of0.94[(BixNa0.5)TiO3]-0.06[BaTiO3] (x = 0.500~0.515) compositions were prepared by a modified mixed oxide method. To increase the chemical homogeneity andre action activity, high energy mechanical milling machine and pre-milled nanosized powder has been used. In this method (BixNa0.5)TiO3 (x=0.500~0.515) andBaTiO3 were prepared separately from pre-milled constituent materials at low calcination temperature and then separately prepared BNTX (X=1, 2, 3 and 4) and BT were mixed by high energy mechanical milling machine. Without further calcination step the mixed powders were pressed into disk shape and sintered at $1110^{\circ}C$. Microstructures, phase structures and electrical properties of the ceramic specimens were systematically investigated. Highly dense ceramic specimens with homogenous grains were prepared in spite of relatively low sintering temperature. Phase structures were not significantly influenced by the excess amount Bi. Large variation on the piezoelectric and dielectric properties was detected at relative high excess Bi amounts. When $x{\leq}0.505$, the specimens exhibit insignificant variation in piezoelectric and dielectric constant though depolarization temperature is found to be decreased. Considerable amount of decrease in piezoelectric and dielectric properties are observed with higher excess of Bi amounts ($x{\geq}0.505$). This research indicates the advantages of high energy mechanical milling and importance of proper maintenance of Bi stoichiometry.

  • PDF

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.

고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구 (Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries)

  • 전용희;임수아
    • 전기화학회지
    • /
    • 제24권4호
    • /
    • pp.120-132
    • /
    • 2021
  • 기존 LiCoO2의 고전압 사용의 제약에 따른 용량적 한계와 코발트 원료의 높은 가격을 해결하기 위하여 high-Nickel에 대한 개발이 활발히 진행되고 있지만 Ni 함량의 증가에 따른 구조적 안정성의 저하에 의한 전지 특성의 저하는 상용화를 지연시키는 중요한 원인이 되고 있다. 이에 Ni-rich 삼성분계 양극소재 LiNi0.6Co0.2Mn0.2O2의 고안정성을 높이고자 전구체에 균일한 이종원소 Ti를 치환을 위해서 나노크기의 TiO2 서스펜젼 형태 소스를 사용하여 전구체 Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2를 제조하였다. Li2CO3와 혼합하고, 열처리 후 양극활물질 LiNi0.6Co0.2Mn0.2-xTixO2 합성하여 Ti 함량에 따른 물리적 특성을 비교하였다. Field Emission Scanning electron Microscope(FE-SEM) 및 Energy Dispersive Spectroscopy (EDS) mapping 분석을 통해 Ti 치환된 구형의 전구체와 입자 크기 측정을 통해 균일한 입자크기를 가지는 양극 활물질 제조를 확인하였고, 내부치밀도와 강도가 증가함을 확인 하고, X-ray Diffractometry (XRD) 구조 분석과 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 정량분석을 통해 Ti 치환된 양극활물질 제조 및 고온, 고전압에서 충·방전을 지속하더라도 효과적으로 용량이 유지됨을 확인하였다.