Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.3.237

Effect of Pyrolysis temperature on TiO2 Nanoparticles Synthesized by a Salt-assisted Ultrasonic Spray Pyrolysis Process  

Yoo, Jae-Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Ji, Myeong-Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Park, Woo-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.26, no.3, 2019 , pp. 237-242 More about this Journal
Abstract
In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate ($NaNO_3$) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide ($TiO_2$) particles. The added $NaNO_3$ prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing $NaNO_3$ and NaF from the secondary particles, which consist of the salts and $TiO_2$ nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized $TiO_2$ nanoparticles have a size of approximately 2-10 nm a bandgap energy of 3.1-3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized $TiO_2$ nanoparticles.
Keywords
$TiO_2$; Nanoparticles; Ultrasonic spray pyrolysis; Temperature; Photocatalyst;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W. Bahnemann: Chem. Rev., 114 (2014) 9919.   DOI
2 X. Chen and A. Selloni: Chem. Rev., 114 (2014) 9281.   DOI
3 K. Nakata and A. Fujishima: Photochemistry Rev., 13 (2012) 169.   DOI
4 S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu X. Han, M. Liu, J. Sun and J. Sun: Rsc Adv., 5 (2015) 14610.   DOI
5 Y.-I. Lee, J.-S. Lee, E.-S. Park, D.-H. Jang, J.-E. Lee, K. Kim, N. V. Myung and Y.-H. Choa: J. Nanosci. Nanotechnol., 14 (2014) 8005.   DOI
6 W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A. A. Elzatahry, Y. Xia and D. Zhao: J. Am. Chem. Soc., 135 (2013) 18300.   DOI
7 R. Thapa, S. Maiti, T. H. Rana, U. N. Maiti and K. K. Chattopadhyay: J. Mol. Catal. A: Chem., 363-364 (2012) 223.   DOI
8 Q. Qu, H. Geng, R. Peng, Q. Cui, X. Gu, F. Li and M. Wang: Langmuir, 26 (2010) 9539.   DOI
9 Z. Cheng, P. Foroughi and A. Behrens: Ceram. Int., 43 (2017) 3431.   DOI
10 G. L. Messing, S. C. Zhang and G. V. Jayanthi: J. Am. Ceram. Soc., 76 (1993) 2707.   DOI
11 W. N. Wang, A. Purwanto, I. W. Lenggoro, K. Okuyama, H. Chang and H. D. Gang: Ind. Eng. Chem. Res., 47 (2008) 1650.   DOI
12 M.-J. Ji, W.-Y. Park, J.-H. Yoo and Y.-I. Lee: J. Korean Powder Metall. Inst., 26 (2019) 34.   DOI
13 D. Lin, H. Wu, R. Zhang and W. Pan: Chem. Mater., 21 (2009) 3479.   DOI
14 H. Lin, C. P. Huang, W. Li, C. Ni, S. I. Shah and Y. H. Tseng: Appl. Catal. B, 68 (2006) 1.   DOI
15 S. G. Kumar and L. G. Devi: J. Phys. Chem. A, 115 (2011) 13211.   DOI