DOI QR코드

DOI QR Code

고온 인산염 유기 전해질에서의 TiO2 나노구조 형성 원리와 응용

A Review of Anodic TiO2 Nanostructure Formation in High-temperature Phosphate-based Organic Electrolytes: Properties and Applications

  • 오현철 (경남과학기술대학교 에너지공학과) ;
  • 이영세 (경북대학교 나노소재공학부) ;
  • 이기영 (경북대학교 나노소재공학부)
  • Oh, Hyunchul (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Lee, Young Sei (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Kiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University)
  • 투고 : 2017.06.08
  • 심사 : 2017.06.30
  • 발행 : 2017.08.10

초록

전기화학 방법을 이용한 이산화티타늄 나노구조에 대한 기존 연구는 불소 이온을 함유한 전해질에서의 산화반응으로 형성된 나노튜브가 연구의 주를 이루고 있다. 최근, 불소 이온이 아닌 고온 인산염이 함유된 글리세롤계 전해질의 개발로 관련 연구가 활발히 진행되고 있다. 본 총설은 이러한 전해질을 활용하여 다양한 이산화티타늄 나노구조를 형성하는 연구 동향에 대해 다루고 있다. 새로운 양극산화법을 통해 형성된 이산화티타늄 나노구조는 기존의 나노튜브에 비하여 비표면적이 넓고 결정성과 접착력이 우수하여 여러 응용분야에 활용가치가 높다. 이에 본 총설에서는 새로운 양극산화법을 이용한 나노구조의 형성 원리, 특성에 대한 개괄적 접근 뿐만 아니라 실제 응용분야에서의 소재성능을 기존 나노튜브 구조와 비교한 결과 등을 망라하여 자세히 소개하고 있다.

In the present review, we provide an overview of the research trend of anodic $TiO_2$ nanostructures. To date, most anodic $TiO_2$ nanostructure formation has focused on the fluoride ion electrolyte system to form nanotube layers. Recently, a novel approach that describes the formation of thick, self-organized $TiO_2$ nanostructures was reported. These layers can be prepared on Ti metal by anodization in a hot organic/$K_2HPO_4$ electrolyte. This nanostructure consists of a strongly interlinked network of nanosized $TiO_2$, and thus provides a considerably higher specific surface area than that of using anodic $TiO_2$ nanotubes. This review describes the formation mechanism and novel properties of the new nanostructures, and introduces potential applications.

키워드

참고문헌

  1. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater., 11, 1307-1311 (1999). https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
  2. M. S. Sander, M. J. Côté, W. Gu, B. M. Kile, and C. P. Tripp, Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates, Adv. Mater., 16, 2052-2057 (2004). https://doi.org/10.1002/adma.200400446
  3. M. Assefpour-Dezfuly, C. Vlachos, and E. H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces, J. Mater. Sci., 19, 3626-3639 (1984). https://doi.org/10.1007/BF02396935
  4. X. Wang, Z. Li, J. Shi, and Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts, Chem. Rev., 114, 9346-9384 (2014). https://doi.org/10.1021/cr400633s
  5. P. Roy, S. Bergr, and P. Schmuki, $TiO_2$ nanotubes: synthesis and applications, Angew. Chem. Int. Ed., 50, 2904-2939 (2011). https://doi.org/10.1002/anie.201001374
  6. K. Lee, A. Mazare, and P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes, Chem. Rev., 114, 9385-9454 (2014). https://doi.org/10.1021/cr500061m
  7. B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films, Nature, 353, 737-740 (1991). https://doi.org/10.1038/353737a0
  8. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37-38 (1972). https://doi.org/10.1038/238037a0
  9. H. Tokudome and M. Miyauchi, Electrochromism of titanate-based nanotubes, Angew. Chem. Int. Ed., 44, 1974-1977 (2005) https://doi.org/10.1002/anie.200462448
  10. L. Kavan, Electrochemistry of titanium dioxide: some aspects and highlights, Chem. Rec., 12, 131-142 (2012). https://doi.org/10.1002/tcr.201100012
  11. Y. Oshida, Bioscience and Bioengineering of Titanium Materials, 2nd ed., Elsevier, Oxford, UK (2013).
  12. A. Tricoli, M. Righettoni, and A. Teleki, Semiconductor gas sensors: dry synthesis and application, Angew. Chem., Int. Ed., 42, 7632-7659 (2010).
  13. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Formation of titanium oxide nanotube, Langmuir, 14, 3160-3163 (1998). https://doi.org/10.1021/la9713816
  14. H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Formation of $TiO_2$ and $ZrO_2$ nanotubes using atomic layer deposition with ultraprecise control of the wall thickness, Adv. Mater., 16, 1197-1200 (2004). https://doi.org/10.1002/adma.200306296
  15. X. Chen and S. S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891-2959 (2007). https://doi.org/10.1021/cr0500535
  16. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface, 27, 629-637 (1999). https://doi.org/10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
  17. R. Beranek, H. Hildebrand, and P. Schmuki, Self-organized porous titanium oxide prepared in $H_2SO_4/HF$ electrolytes, Electrochem. Solid State Lett., 6(3), B12-B14 (2003). https://doi.org/10.1149/1.1545192
  18. S. Berger, S. P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J. S. Hammond, D. F. Paul, and S. Reichlmaier, The origin for tubular growth of $TiO_2$ nanotubes: A fluoride rich layer between tube-walls, Surf. Sci., 605, L57-L60 (2011). https://doi.org/10.1016/j.susc.2011.06.019
  19. D. Kowalski, D. Kim, and P. Schmuki, $TiO_2$ nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, 8, 235-264 (2013). https://doi.org/10.1016/j.nantod.2013.04.010
  20. B. Melody, T. Kinard, and P. Lessner, The non-thickness limited growth of anodic oxide films on valve metals, Electrochem. Solid State Lett., 1, 126-129 (1998).
  21. J. T. Kinard, B. J. Melody, and P. M. Lessner, Electrolyte for anodizing valve metals, US Patent 5935408 A (1998).
  22. Q. Lu, G. Alcala, P. Skeldon, G. E. Thompson, M. J. Graham, D. Masheder, K. Shimizu, and H. Habazaki, Porous tantala and alumina films from non-thickness limited anodising in phosphate/glycerol electrolyte, Electrochim. Acta, 48, 37-42 (2002). https://doi.org/10.1016/S0013-4686(02)00545-5
  23. S. Yang, Y. Aoki, and H. Habazaki, Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte, Appl. Surf. Sci., 257, 8190-8195 (2011). https://doi.org/10.1016/j.apsusc.2011.01.041
  24. S. Yang, Y. Aoki, P. Skeldon, G. E. Thompson, and H. Habazaki. Growth of porous anodic alumina films in hot phosphate-glycerol electrolyte, J. Solid State Electrochem., 15, 689-696 (2011). https://doi.org/10.1007/s10008-010-1141-6
  25. D. Kim, K. Lee, P. Roy, B. I. Birajdar, E. Spiecker, and P. Schmuki, Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells, Angew. Chem. Int. Ed., 48, 9326-9329 (2009). https://doi.org/10.1002/anie.200904455
  26. K. Lee, D. Kim, P. Roy, I. Paramasivam, B. I. Birajdar, E. Spiecker, and P. Schmuki, Anodic formation of thick anatase $TiO_2$ layers for high-efficiency, J. Am. Chem. Soc., 132, 1478-1479 (2010). https://doi.org/10.1021/ja910045x
  27. K. Lee, D. Kim, and P. Schmuki, Highly self-ordered $TiO_2$ structures by in a hot glycerol electrolyte, Chem. Commun., 47, 5789-5791 (2011). https://doi.org/10.1039/c1cc11160d
  28. K. Lee, D. Kim, S. Berger, R. Kirchgeorg, and P. Schmuki, Anodically formed transparent mesoporous $TiO_2$ electrodes for high contrast, J. Mater. Chem., 22, 9821-9825 (2012). https://doi.org/10.1039/c2jm31244a
  29. K. Lee, Understanding the formation of anodic nanoporous $TiO_2$ structures in a hot glycerol/phosphate electrolyte, J. Electrochem. Soc., 164, E5-E10 (2017). https://doi.org/10.1149/2.0481702jes
  30. K. Lee, D. Kim, S. Berger, R. Kirchgeorg, and P. Schmuki, Front side illuminated dye-sensitized solar cells using anodic $TiO_2$ mesoporous layers grown on FTO-glass, Electrochem. Commun., 22, 157-161 (2012). https://doi.org/10.1016/j.elecom.2012.06.005
  31. K. Lee, R, Kirchgeorg, and P. Schmuki, Role of transparent electrodes for high efficiency $TiO_2$ nanotube based dye-sensitized solar cells, J. Phys. Chem. C, 118, 16562-16566 (2014). https://doi.org/10.1021/jp412351g
  32. A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C.-A. Schiller, P. Falaras, and P. Schmuki, $TiO_2$ nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency, Chem. Asian J., 4, 520-525 (2009). https://doi.org/10.1002/asia.200800441
  33. A. Mills, R. H. Davies, and D. Worsley, Water purification by semiconductor photocatalysis, Chem. Soc, Rev., 22, 417-425 (1993). https://doi.org/10.1039/cs9932200417
  34. N. Ohtsu, N. Masahashi, Y. Mizukoshi, and K. Wagatsuma, Hydrocarbon decomposition on a hydrophilic $TiO_2$ surface by UV irradiation: Spectral and quantitative analysis using in-situ XPS technique, Langmuir, 25, 11586-11591 (2009). https://doi.org/10.1021/la901505m
  35. T. Zubkov, D. Stahl, T. L. Thompson, D. Panayotov, O. Diwald, and J. T. Jr. Yates, Ultraviolet light-induced hydrophilicity effect on $TiO_2$ (110)($1{\times}1$) dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets, J. Phys. Chem. B, 109, 15454-15462 (2005). https://doi.org/10.1021/jp058101c
  36. F. Kiriakidou, D. I. Kondarides, and X. E. Verikios, The effect of operational parameters and $TiO_2$-doping on the photocatalytic degradation of azo-dyes, Catal. Today, 54, 119-130 (1999). https://doi.org/10.1016/S0920-5861(99)00174-1
  37. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone, $TiO_2$-assisted photodegradation of dye pollutants: II. Adsorption and degradation kinetics of eosin in $TiO_2$ dispersions under visible light irradiation, Appl. Catal. B, 15, 147-156 (1998). https://doi.org/10.1016/S0926-3373(97)00043-X
  38. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. J. Hashimoto, Studies of surface wettability conversion on $TiO_2$ single-crystal surfaces, J. Phys. Chem. B, 103, 2188-2194 (1999). https://doi.org/10.1021/jp983386x
  39. W. West, First hundred years of spectral sensitization, Photogr. Sci. Eng., 18, 35-48 (1974).
  40. J. Moser, Notiz uber Verstärkung photoelektrischer Strome durch optische Sensibilisirung, Monatsh. Chem., 8, 373 (1887). https://doi.org/10.1007/BF01510059
  41. J. Desilvestro, M. Gratzel, L. Kavan, J. Moser, and J. Augustynski, Highly efficient sensitization of titanium dioxide J. Am. Chem. Soc., 107, 2988-2990 (1985). https://doi.org/10.1021/ja00296a035
  42. N. Vlachopoulos, P. Liska, J. Augustynski, and M. Gratzel, Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films, J. Am. Chem. Soc., 110, 1216-1220 (1988). https://doi.org/10.1021/ja00212a033
  43. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gratzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers J. Am. Chem. Soc., 127, 16835-16847 (2005). https://doi.org/10.1021/ja052467l
  44. Y. Tachibana, J. E. Moser, M. Grtzel, D. R. Klug, and J. R. Durrant, subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide Films, J. Phys. Chem., 100, 20056-20062 (1996). https://doi.org/10.1021/jp962227f
  45. L. M. Peter, Characterization and modeling of dye-sensitized solar cells, J. Phys. Chem. C, 111, 6601-6612 (2007). https://doi.org/10.1021/jp069058b
  46. M. Bailes, P. J. Cameron, K. Lobato, and L. M. Peter, Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells, J. Phys. Chem. B, 109, 15429-15435 (2005). https://doi.org/10.1021/jp050822o
  47. P. J. Cameron and L. M. Peter, How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?, J. Phys. Chem. B, 109, 7392-7398 (2005). https://doi.org/10.1021/jp0407270
  48. J. R. Jennings and L. M. Peter, A reappraisal of the electron diffusion length in solid-state dye-sensitized solar cells, J. Phys. Chem. C, 111, 16100-16104 (2007). https://doi.org/10.1021/jp076457d
  49. K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, Spray deposition of electrospun $TiO_2$ nanorods for dye-sensitized solar cell, Nanotechnology, 18, 365709 (2007). https://doi.org/10.1088/0957-4484/18/36/365709
  50. S. Ito, N. C. Ha, G. Rothenberger, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, and M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-$TiO_2$ photoanode, Chem. Commun., 4004-4006 (2006).
  51. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Gratzel, Application of highly ordered $TiO_2$ nanotube arays in flexible dye-sensitized solar cells, ACS Nano, 2, 1113-1116 (2008). https://doi.org/10.1021/nn800174y
  52. D. Kim, P. Roy, K. Lee, and P. Schmuki, Dye-sensitized solar cells using anodic $TiO_2$: Improved efficiency by $TiCl_4$ treatment, Electrochem. Commun., 12, 574-578 (2010). https://doi.org/10.1016/j.elecom.2010.02.003