Browse > Article
http://dx.doi.org/10.14478/ace.2017.1057

A Review of Anodic TiO2 Nanostructure Formation in High-temperature Phosphate-based Organic Electrolytes: Properties and Applications  

Oh, Hyunchul (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH))
Lee, Young Sei (School of Nano & Materials Science and Engineering, Kyungpook National University)
Lee, Kiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.4, 2017 , pp. 375-382 More about this Journal
Abstract
In the present review, we provide an overview of the research trend of anodic $TiO_2$ nanostructures. To date, most anodic $TiO_2$ nanostructure formation has focused on the fluoride ion electrolyte system to form nanotube layers. Recently, a novel approach that describes the formation of thick, self-organized $TiO_2$ nanostructures was reported. These layers can be prepared on Ti metal by anodization in a hot organic/$K_2HPO_4$ electrolyte. This nanostructure consists of a strongly interlinked network of nanosized $TiO_2$, and thus provides a considerably higher specific surface area than that of using anodic $TiO_2$ nanotubes. This review describes the formation mechanism and novel properties of the new nanostructures, and introduces potential applications.
Keywords
$TiO_2$ nanostructure; porous structure; anodization; phosphate/glycerol electrolyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater., 11, 1307-1311 (1999).   DOI
2 M. S. Sander, M. J. Côté, W. Gu, B. M. Kile, and C. P. Tripp, Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates, Adv. Mater., 16, 2052-2057 (2004).   DOI
3 M. Assefpour-Dezfuly, C. Vlachos, and E. H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces, J. Mater. Sci., 19, 3626-3639 (1984).   DOI
4 X. Wang, Z. Li, J. Shi, and Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts, Chem. Rev., 114, 9346-9384 (2014).   DOI
5 P. Roy, S. Bergr, and P. Schmuki, $TiO_2$ nanotubes: synthesis and applications, Angew. Chem. Int. Ed., 50, 2904-2939 (2011).   DOI
6 K. Lee, A. Mazare, and P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes, Chem. Rev., 114, 9385-9454 (2014).   DOI
7 B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films, Nature, 353, 737-740 (1991).   DOI
8 A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37-38 (1972).   DOI
9 J. T. Kinard, B. J. Melody, and P. M. Lessner, Electrolyte for anodizing valve metals, US Patent 5935408 A (1998).
10 Q. Lu, G. Alcala, P. Skeldon, G. E. Thompson, M. J. Graham, D. Masheder, K. Shimizu, and H. Habazaki, Porous tantala and alumina films from non-thickness limited anodising in phosphate/glycerol electrolyte, Electrochim. Acta, 48, 37-42 (2002).   DOI
11 S. Yang, Y. Aoki, and H. Habazaki, Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte, Appl. Surf. Sci., 257, 8190-8195 (2011).   DOI
12 S. Yang, Y. Aoki, P. Skeldon, G. E. Thompson, and H. Habazaki. Growth of porous anodic alumina films in hot phosphate-glycerol electrolyte, J. Solid State Electrochem., 15, 689-696 (2011).   DOI
13 D. Kim, K. Lee, P. Roy, B. I. Birajdar, E. Spiecker, and P. Schmuki, Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells, Angew. Chem. Int. Ed., 48, 9326-9329 (2009).   DOI
14 K. Lee, D. Kim, P. Roy, I. Paramasivam, B. I. Birajdar, E. Spiecker, and P. Schmuki, Anodic formation of thick anatase $TiO_2$ layers for high-efficiency, J. Am. Chem. Soc., 132, 1478-1479 (2010).   DOI
15 S. Ito, N. C. Ha, G. Rothenberger, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, and M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-$TiO_2$ photoanode, Chem. Commun., 4004-4006 (2006).
16 H. Tokudome and M. Miyauchi, Electrochromism of titanate-based nanotubes, Angew. Chem. Int. Ed., 44, 1974-1977 (2005)   DOI
17 L. Kavan, Electrochemistry of titanium dioxide: some aspects and highlights, Chem. Rec., 12, 131-142 (2012).   DOI
18 P. J. Cameron and L. M. Peter, How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?, J. Phys. Chem. B, 109, 7392-7398 (2005).   DOI
19 J. R. Jennings and L. M. Peter, A reappraisal of the electron diffusion length in solid-state dye-sensitized solar cells, J. Phys. Chem. C, 111, 16100-16104 (2007).   DOI
20 K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, Spray deposition of electrospun $TiO_2$ nanorods for dye-sensitized solar cell, Nanotechnology, 18, 365709 (2007).   DOI
21 H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Formation of $TiO_2$ and $ZrO_2$ nanotubes using atomic layer deposition with ultraprecise control of the wall thickness, Adv. Mater., 16, 1197-1200 (2004).   DOI
22 D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Gratzel, Application of highly ordered $TiO_2$ nanotube arays in flexible dye-sensitized solar cells, ACS Nano, 2, 1113-1116 (2008).   DOI
23 D. Kim, P. Roy, K. Lee, and P. Schmuki, Dye-sensitized solar cells using anodic $TiO_2$: Improved efficiency by $TiCl_4$ treatment, Electrochem. Commun., 12, 574-578 (2010).   DOI
24 Y. Oshida, Bioscience and Bioengineering of Titanium Materials, 2nd ed., Elsevier, Oxford, UK (2013).
25 A. Tricoli, M. Righettoni, and A. Teleki, Semiconductor gas sensors: dry synthesis and application, Angew. Chem., Int. Ed., 42, 7632-7659 (2010).
26 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Formation of titanium oxide nanotube, Langmuir, 14, 3160-3163 (1998).   DOI
27 X. Chen and S. S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891-2959 (2007).   DOI
28 V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface, 27, 629-637 (1999).   DOI
29 R. Beranek, H. Hildebrand, and P. Schmuki, Self-organized porous titanium oxide prepared in $H_2SO_4/HF$ electrolytes, Electrochem. Solid State Lett., 6(3), B12-B14 (2003).   DOI
30 S. Berger, S. P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J. S. Hammond, D. F. Paul, and S. Reichlmaier, The origin for tubular growth of $TiO_2$ nanotubes: A fluoride rich layer between tube-walls, Surf. Sci., 605, L57-L60 (2011).   DOI
31 A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C.-A. Schiller, P. Falaras, and P. Schmuki, $TiO_2$ nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency, Chem. Asian J., 4, 520-525 (2009).   DOI
32 D. Kowalski, D. Kim, and P. Schmuki, $TiO_2$ nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, 8, 235-264 (2013).   DOI
33 B. Melody, T. Kinard, and P. Lessner, The non-thickness limited growth of anodic oxide films on valve metals, Electrochem. Solid State Lett., 1, 126-129 (1998).
34 K. Lee, D. Kim, and P. Schmuki, Highly self-ordered $TiO_2$ structures by in a hot glycerol electrolyte, Chem. Commun., 47, 5789-5791 (2011).   DOI
35 K. Lee, D. Kim, S. Berger, R. Kirchgeorg, and P. Schmuki, Anodically formed transparent mesoporous $TiO_2$ electrodes for high contrast, J. Mater. Chem., 22, 9821-9825 (2012).   DOI
36 K. Lee, Understanding the formation of anodic nanoporous $TiO_2$ structures in a hot glycerol/phosphate electrolyte, J. Electrochem. Soc., 164, E5-E10 (2017).   DOI
37 K. Lee, D. Kim, S. Berger, R. Kirchgeorg, and P. Schmuki, Front side illuminated dye-sensitized solar cells using anodic $TiO_2$ mesoporous layers grown on FTO-glass, Electrochem. Commun., 22, 157-161 (2012).   DOI
38 K. Lee, R, Kirchgeorg, and P. Schmuki, Role of transparent electrodes for high efficiency $TiO_2$ nanotube based dye-sensitized solar cells, J. Phys. Chem. C, 118, 16562-16566 (2014).   DOI
39 A. Mills, R. H. Davies, and D. Worsley, Water purification by semiconductor photocatalysis, Chem. Soc, Rev., 22, 417-425 (1993).   DOI
40 N. Ohtsu, N. Masahashi, Y. Mizukoshi, and K. Wagatsuma, Hydrocarbon decomposition on a hydrophilic $TiO_2$ surface by UV irradiation: Spectral and quantitative analysis using in-situ XPS technique, Langmuir, 25, 11586-11591 (2009).   DOI
41 J. Moser, Notiz uber Verstärkung photoelektrischer Strome durch optische Sensibilisirung, Monatsh. Chem., 8, 373 (1887).   DOI
42 T. Zubkov, D. Stahl, T. L. Thompson, D. Panayotov, O. Diwald, and J. T. Jr. Yates, Ultraviolet light-induced hydrophilicity effect on $TiO_2$ (110)($1{\times}1$) dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets, J. Phys. Chem. B, 109, 15454-15462 (2005).   DOI
43 F. Kiriakidou, D. I. Kondarides, and X. E. Verikios, The effect of operational parameters and $TiO_2$-doping on the photocatalytic degradation of azo-dyes, Catal. Today, 54, 119-130 (1999).   DOI
44 F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone, $TiO_2$-assisted photodegradation of dye pollutants: II. Adsorption and degradation kinetics of eosin in $TiO_2$ dispersions under visible light irradiation, Appl. Catal. B, 15, 147-156 (1998).   DOI
45 R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. J. Hashimoto, Studies of surface wettability conversion on $TiO_2$ single-crystal surfaces, J. Phys. Chem. B, 103, 2188-2194 (1999).   DOI
46 W. West, First hundred years of spectral sensitization, Photogr. Sci. Eng., 18, 35-48 (1974).
47 J. Desilvestro, M. Gratzel, L. Kavan, J. Moser, and J. Augustynski, Highly efficient sensitization of titanium dioxide J. Am. Chem. Soc., 107, 2988-2990 (1985).   DOI
48 N. Vlachopoulos, P. Liska, J. Augustynski, and M. Gratzel, Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films, J. Am. Chem. Soc., 110, 1216-1220 (1988).   DOI
49 Y. Tachibana, J. E. Moser, M. Grtzel, D. R. Klug, and J. R. Durrant, subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide Films, J. Phys. Chem., 100, 20056-20062 (1996).   DOI
50 M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gratzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers J. Am. Chem. Soc., 127, 16835-16847 (2005).   DOI
51 L. M. Peter, Characterization and modeling of dye-sensitized solar cells, J. Phys. Chem. C, 111, 6601-6612 (2007).   DOI
52 M. Bailes, P. J. Cameron, K. Lobato, and L. M. Peter, Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells, J. Phys. Chem. B, 109, 15429-15435 (2005).   DOI