DOI QR코드

DOI QR Code

Effect of Pyrolysis temperature on TiO2 Nanoparticles Synthesized by a Salt-assisted Ultrasonic Spray Pyrolysis Process

염 보조 초음파 분무 열분해 공정으로 합성된 TiO2 나노입자의 특성에 열분해 온도가 미치는 영향

  • Yoo, Jae-Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ji, Myeong-Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Woo-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 유재현 (서울과학기술대학교 신소재공학과) ;
  • 지명준 (서울과학기술대학교 신소재공학과) ;
  • 박우영 (서울과학기술대학교 신소재공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2019.06.18
  • Accepted : 2019.06.20
  • Published : 2019.06.28

Abstract

In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate ($NaNO_3$) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide ($TiO_2$) particles. The added $NaNO_3$ prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing $NaNO_3$ and NaF from the secondary particles, which consist of the salts and $TiO_2$ nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized $TiO_2$ nanoparticles have a size of approximately 2-10 nm a bandgap energy of 3.1-3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized $TiO_2$ nanoparticles.

Keywords

References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W. Bahnemann: Chem. Rev., 114 (2014) 9919. https://doi.org/10.1021/cr5001892
  2. X. Chen and A. Selloni: Chem. Rev., 114 (2014) 9281. https://doi.org/10.1021/cr500422r
  3. K. Nakata and A. Fujishima: Photochemistry Rev., 13 (2012) 169. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  4. S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu X. Han, M. Liu, J. Sun and J. Sun: Rsc Adv., 5 (2015) 14610. https://doi.org/10.1039/C4RA13734E
  5. Y.-I. Lee, J.-S. Lee, E.-S. Park, D.-H. Jang, J.-E. Lee, K. Kim, N. V. Myung and Y.-H. Choa: J. Nanosci. Nanotechnol., 14 (2014) 8005. https://doi.org/10.1166/jnn.2014.9445
  6. W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A. A. Elzatahry, Y. Xia and D. Zhao: J. Am. Chem. Soc., 135 (2013) 18300. https://doi.org/10.1021/ja4100723
  7. R. Thapa, S. Maiti, T. H. Rana, U. N. Maiti and K. K. Chattopadhyay: J. Mol. Catal. A: Chem., 363-364 (2012) 223. https://doi.org/10.1016/j.molcata.2012.06.013
  8. Q. Qu, H. Geng, R. Peng, Q. Cui, X. Gu, F. Li and M. Wang: Langmuir, 26 (2010) 9539. https://doi.org/10.1021/la100121n
  9. Z. Cheng, P. Foroughi and A. Behrens: Ceram. Int., 43 (2017) 3431. https://doi.org/10.1016/j.ceramint.2016.11.177
  10. G. L. Messing, S. C. Zhang and G. V. Jayanthi: J. Am. Ceram. Soc., 76 (1993) 2707. https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
  11. W. N. Wang, A. Purwanto, I. W. Lenggoro, K. Okuyama, H. Chang and H. D. Gang: Ind. Eng. Chem. Res., 47 (2008) 1650. https://doi.org/10.1021/ie070821d
  12. M.-J. Ji, W.-Y. Park, J.-H. Yoo and Y.-I. Lee: J. Korean Powder Metall. Inst., 26 (2019) 34. https://doi.org/10.4150/KPMI.2019.26.1.34
  13. D. Lin, H. Wu, R. Zhang and W. Pan: Chem. Mater., 21 (2009) 3479. https://doi.org/10.1021/cm900225p
  14. H. Lin, C. P. Huang, W. Li, C. Ni, S. I. Shah and Y. H. Tseng: Appl. Catal. B, 68 (2006) 1. https://doi.org/10.1016/j.apcatb.2006.07.018
  15. S. G. Kumar and L. G. Devi: J. Phys. Chem. A, 115 (2011) 13211. https://doi.org/10.1021/jp204364a