Phase Characterization and Oxidation Behavior of Ti-Al-N and Ti-Al-Si-N Coatings

Ti-Al-N과 Ti-Al-Si-N 코팅막의 상 특성 및 내산화 거동

  • Kim, Jung-Wook (School of Materials Science and Engineering, Pusan National University) ;
  • Jeon, Jun-Ha (School of Materials Science and Engineering, Pusan National University) ;
  • Cho, Gun (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Kwang-Ho (School of Materials Science and Engineering, Pusan National University)
  • 김정욱 (부산대학교 재료공학부 기계박막재료연구실) ;
  • 전준하 (부산대학교 재료공학부 기계박막재료연구실) ;
  • 조건 (부산대학교 재료공학부 기계박막재료연구실) ;
  • 김광호 (부산대학교 재료공학부 기계박막재료연구실)
  • Published : 2004.06.01

Abstract

Ti-Al-N ($Ti_{75}$ $Al_{25}$ N) and Ti-Al-Si-N ($Ti_{69}$ $Al_{23}$ $Si_{8}$N) coatings synthesized by a DC magnetron sputtering technique were studied comparatively with respect to phase characterization and high-temperature oxidation behavior. $Ti_{69}$ $Al_{23}$ $Si_{ 8}$N coating had a nanocomposite microstructure consisting of nanosized(Ti,Al,Si)N crystallites and amorphous $Si_3$$N_4$, with smooth surface morphology. Ti-Al-N coating of which surface $Al_2$$O_3$ layer formed during oxidation suppressed further oxidation. It was sufficiently stable against oxidation up to about $700^{\circ}C$. Ti-Al-Si-N coating showed better oxidation resistance because both surface Ab03 and near-surface $SiO_2$ layers suppressed further oxidation. XRD, GDOES, XPS, and scratch tests were performed.

Keywords

References

  1. S. PalDey, S. C. Deevi, Mater. Sci. Engineering,A 342 (2003) 58
  2. D. McIntyre, J. E. Greene, G. Hakansson, J.-E.Sundgren, W.-D. Munz, J. Appl. Phys., 67(3) (1990)1542 https://doi.org/10.1063/1.345664
  3. W.-D. Munz, J. Vac. Sci. Technol., A(4) (1986) 2717
  4. T. Ikeda, H. Satoh, Thin Solid Films, 195 (1991) 99 https://doi.org/10.1016/0040-6090(91)90262-V
  5. O. Knotek, M. Bohmer, T. Leyendecker, J. VacSci. Technol., A 4(6) (1986) 2695
  6. C. W. Kim, K. H. Kim, Thin Solid Films, 307(1997) 113 https://doi.org/10.1016/S0040-6090(97)00212-5
  7. A. Joshi, H. S. Hu, Surf. Coat. Technol., 76-77(1995) 499 https://doi.org/10.1016/0257-8972(95)02566-9
  8. S. Veprek, S. Reiprich, Thin Solid Films, 268 (1995)64 https://doi.org/10.1016/0040-6090(95)06695-0
  9. J. Patschieder, T. Zehnder, M. Diserense, Surf. Coat.Technol., 146-147 (2001) 201 https://doi.org/10.1016/S0257-8972(01)01389-5
  10. S. H. Kim, J. K. Kim, K. H. Kim, Thin SolidFilms, 420-421 (2002)
  11. E.-A. Lee, K. H. Kim, Thin Solid Films, 420-421(2002)
  12. J. B. Choi, K. Cho, Yangdo Kim, K. H. Kim, P.K. Song, Jpn. J. Apply. Phys., 42 (2003) 6556-6559 https://doi.org/10.1143/JJAP.42.6556
  13. F. Vaz, L. Rebouta, P. Goudeau, J. Pacaus, H. Garem,J. Riviere, A. Cavaleiro, E. Alves, Surf. Coat.Technol., 133-134 (2000) 307 https://doi.org/10.1016/S0257-8972(00)00947-6
  14. S. Carvalho, L. Rebouta, A. Cavaleiro, L. A. Rocha,J. Gomes, E. Alves, Thin Solid Films, 398-399(2001) 391 https://doi.org/10.1016/S0040-6090(01)01348-7
  15. Y. Tanaka, N. Ichimiya, Y. Onishi, Y. Yamada, Surf.Coat. Technol., 146 (2001) 215 https://doi.org/10.1016/S0257-8972(01)01391-3
  16. I.-W. Park, S. R. Choi, M.-H. Lee, K. H. Kim, JVac. Sci. Technol., A 21(4) (2003) 895
  17. A. Vennemann, H.-R. Stock, J. Kohlscheen, SRambadt, G. Erkens, Surf. Coat. Technol, 174-175(2003) 408 https://doi.org/10.1016/S0257-8972(03)00407-9