DOI QR코드

DOI QR Code

Effect of deposition pressure on the morphology of TiO2 nanoparticles deposited on Al2O3 powders by pulsed laser deposition

펄스레이저 증착법에 의한 Al2O3 입자 표면 위 TiO2 나노입자의 코팅

  • Choi, Bong Geun (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, So Yeon (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Cheol Woo (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Jae Hwa (Division of Materials Science and Engineering, Hanyang University) ;
  • Hong, Yoon Pyo (Division of Materials Science and Engineering, Hanyang University) ;
  • Shim, Kwang Bo (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2013.07.18
  • Accepted : 2013.08.09
  • Published : 2013.08.31

Abstract

Titanium dioxides nanoparticles coated aluminum oxide powders were fabricated by pulsed laser deposition (PLD) with Nd : YAG laser at 266 nm. The Pulse laser energy is 100 mJ/pulse. During the irradiation of the focused laser on the $TiO_2$ target, Ar gas is supplied into the chamber. The gas pressure is varied in a range of $1{\times}10^{-2}$ to 100 Pa. Titanium dioxides nanoparticles deposited aluminum oxide powders were characterized by using energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HR-TEM), in order to understand the effect of Ar background gas on surface morphology and properties of the powders. The coated $TiO_2$ nanoparticles had nanosized spherical shape and the crystallite sizes of 10~30 nm. The morphology of coated $TiO_2$ nanoparticles is not affected by gas pressure. However, the particle size and crystallinity slightly increased with the increase of gas pressure. According to this technique, the size and crystallinity of nanoparticles can be easily controlled by controlling pressure during the laser irradiation.

266 nm 파장을 갖는 Nd : YAG 레이저를 이용한 펄스레이저증착법(PLD)에 의해 모재인 $Al_2O_3$ 입자표면에 코팅된 $TiO_2$ 나노 입자를 제조하였다. 펄스레이저 에너지는 100 mJ/pulse로 고정하였으며, 레이저가 $TiO_2$ 타겟에 조사되는 동안 아르곤 가스를 챔버 내로 공급하였다. 이때, 압력은 $1{\times}10^{-2}Pa$에서 100 Pa로 변화시겼다. 증착된 나노 입자의 형태와 특성에 대한 증착 압력의 효과는 투과전자현미경과 에너지 분산형 X선 분광기를 이용하여 조사하였다. 모재 표면($Al_2O_3$)에 흡착된 나노 입자는 거의 구형이며 10~30 nm의 크기를 갖는다. 증착된 나노 입자의 형태는 기체 압력에 큰 영향을 받지 않는다. 그러나, 증착된 나노입자의 크기와 결정성은 기체 분압이 증가함에 따라서 증가한다. 이 방법에 의해서, 증착된 나노입자의 크기와 결정성은 기체 압력에 의해서 쉽게 조정할 수 있다.

Keywords

References

  1. A. Taleb, C. Petit and M.P. Pileni, "Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles", J. Phys. Chem. B. 102 (1998) 2214. https://doi.org/10.1021/jp972807s
  2. J. Hu, T.W. Odom and C.M. Lieber, "Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes", Acc. Chem. Res. 32 (1999) 435. https://doi.org/10.1021/ar9700365
  3. F. Caruso, "Nanoengineering of particle surfaces", Adv. Mater. 13 (2001) 11. https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  4. J.H. Jean and S.M. Yang, "$Y_2O_2S$:Eu red phosphor powders coated with silica", J. Am. Ceram. Soc. 83 (2000) 1928.
  5. H. Wang, H. Nakamura, K. Yao, M. Uehara, S. Nishimura, H. Maeda and E. Abe, "Effect of polyelectrolyte dispersants on the preparation of silica-coated zinc oxide particles in aqueous media", J. Am. Ceram. Soc. 85 (2002) 1937. https://doi.org/10.1111/j.1151-2916.2002.tb00384.x
  6. P. Bansal, N.P. Padture and A. Vasiliev, "Improved interfacial mechanical properties of $Al_2O_3-13\;wt%TiO_2$ plasma-sprayed coatings derived from nanocrystalline powders", Acta Mater. 51 (2003) 2959. https://doi.org/10.1016/S1359-6454(03)00109-5
  7. Y.J. Kwon, K.H. Kim, C.S. Lim and K.B. Shim, "Low temperature synthesis of ZnO nanopowders by the polymerized complex method", J. Korean Crystal Growth and Crystal Technology 12 (2002) 229.
  8. G.P. Fotou, T.T. Kodas and B. Anderson, "Coating titania aerosol particles with $ZrO_2,\;Al_2O_3/ZrO_2\;and\;SiO_2/ZrO_2$ in a gas phase process", Aerosol Sci. Technol. 33 (2000) 557. https://doi.org/10.1080/02786820050195395
  9. E. elik, "Preparation and characterization of $Al_2O_3-TiO_2$ powders by chemical synthesis for plasma spray coatings", J. Mater. Process. Technol. 128 (2002) 205. https://doi.org/10.1016/S0924-0136(02)00452-1
  10. D. Goberman, T.H. Sohn, L. Shaw, E. Jordan and M. Gell, "Microstructure development of $Al_2O_3-13\;wt%TiO_2$ plasma sprayed coatings derived from nanocrystalline powders", Acta Mater. 50 (2002) 1141. https://doi.org/10.1016/S1359-6454(01)00414-1
  11. S.I. Kitazawa, Y. Choi and S. Yamamoto, "In situ optical spectroscopy of PLD of nano-structured $TiO_2$", Vacuum. 74 (2004) 637. https://doi.org/10.1016/j.vacuum.2004.01.048
  12. C.H. Roh, S.H. Shim, J.-W. Yoon, N. Koshizaki, Y.J. Park and K.B. Shim, "Synthesis and characterization of GaN nanoparticles by pulsed laser deposition", J. Korean Crystal Growth and Crystal Technology 13 (2003) 79.
  13. S. Tanotsu, K. Naooki and Y. Katsutake, JP Patent 2003-328116.
  14. H. Kenji, JP Patent 2003-93863.
  15. Y. Shiyoubon. JP Patent 2001-293348.
  16. Joint Committee on Powder Diffraction Standard, International Center for Diffraction Data, PDF 21-1272, 21-1276.
  17. L. Miao, S. Tanemura, Y. Kondo, M. Iwata, S. Toh and K. Kaneko, "Microstructure and bactericidal ability of photocatalytic $TiO_2$ thin films prepared by rf helicon magnetron sputtering", Appl. Surf. Sci. 238 (2004) 125. https://doi.org/10.1016/j.apsusc.2004.05.193
  18. G.P. Johnston, R. Muenchausen, D.M. Smith, W. Fahrenholtz and S. Foltyn, "Reactive laser ablation synthesis of nanosize alumina powder", J. Am. Ceram. Soc. 75 (1992) 3293. https://doi.org/10.1111/j.1151-2916.1992.tb04424.x

Cited by

  1. Study of surface modification and contact angle by electrospun PVdF-HFP membrane with DLC coating vol.24, pp.1, 2014, https://doi.org/10.6111/JKCGCT.2014.24.1.033
  2. Interfacial degradation of thermal barrier coatings in isothermal and cyclic oxidation test vol.24, pp.4, 2014, https://doi.org/10.6111/JKCGCT.2014.24.4.151