• 제목/요약/키워드: Nanoparticle film

검색결과 176건 처리시간 0.023초

실란기가 도입된 폴리우레탄 아크릴레이트 합성 및 자외선 경화 특성 분석 (Synthesis of Silane Group Modified Polyurethane Acrylate and Analysis of Its UV-curing Property)

  • 김정수
    • 접착 및 계면
    • /
    • 제22권3호
    • /
    • pp.98-105
    • /
    • 2021
  • 본 연구에서는 실란기가 도입된 UV 경화형 우레탄 아크릴레이트를 사용하여 투명성 및 접착성/이형성을 갖춘 silver nanoparticle 전사용 접착 조성물을 제조하였다. Silver nanoparticle이 PET 위에 패터닝되어 있는 Ag/PET 필름과 전사 대상인 PC필름 사이에 제조한 접착 조성물을 도포하고 UV로 광경화한 후, PET를 제거하여 Ag/PC 필름을 제조하였다. 실란기가 도입된 UV 경화형 우레탄 아크릴레이트는 polycaprolactone diol (PCL)과 isophrone diisocyanate (IPDI), 2-hydroxyethyl methacrylate (HEMA), (3-aminopropyl)triethoxysilane (APTES)를 사용하여 합성하였다. APTES의 실란기는 특수 처리된 Ag표면과 반응하여 계면접착력이 개선될 수 있으며, 실란기가 도입된 우레탄 아크릴레이트와 희석제로 투입하는 기능성 아크릴 희석제에 의하여 PC필름과의 접착력을 향상시켰다. 우레탄 아크릴레이트 합성은 FT-IR을 이용하여 분석하였으며, APTES의 몰비와 아크릴 희석제 조성에 따라, 접착 특성과 광학 특성, 전사 특성 등을 비교하였다. 결과적으로, PUA2S1_0.5의 조건으로 제조된 접착 조성물에서 가장 우수한 전사 특성을 확인하였다.

Process and characterization of an electrochromic film made of silica-polyaniline composite nanoparticle

  • Hwang, Tae-Jin;Lee, Heung-Yeol;Joo, Hyun-Jung;Yim, Tai-Hong
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.6-7
    • /
    • 2008
  • Composite nanoparticles of silica-polyaniline were synthesized and tested as an electrochromic material. For the optical application, the size of the nanoparticle was intended to be less than 100 nm in diameter. The synthesis was done by using a microemulsion synthesis method where the silica-polyaniline composite nanoparticle was obtained by dispersing two acidic aqueous phases containing aniline and polymerization agent, respectively. Microstructure analysis such as TEM and BET surface area measurement showed the possibility that polyaniline is incorporated in porous silica structure. The composite structure of the particle was proved to enhance chemical stability of the prepared electrochromic film.

  • PDF

Electrospray를 통한 전도성 박막의 제조 (Preparation of Conductive $TiO_2$ thin film by Electrospray Depositon)

  • 이경화;김한성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.381-382
    • /
    • 2008
  • $TiO_2$ colloidal solution was electrosprayed for preparing a conductive thin film with high quality. Electrospray is a technique of liquid dispersion electrically and a good method of manufacturing nanoparticle, nanofiber, porous membrane, film preparation and coating. Water and ethanol were used as solvents and their mixing ratio was varied for studying the influence of solvent volatile on nanoparticle dispersion. Various nozzles to control the thru-put of solutions.were examined. Integrated analytical method and scanning electron microscope were used to analyze integrity and microscopic images.

  • PDF

Uniform PMMA-CH3NH3PbBr3 Nanoparticle Composite Film for Optoelectronic Application

  • Kirakosyan, Artavazd;Yun, Seokjin;Choi, Jihoon
    • 한국재료학회지
    • /
    • 제27권6호
    • /
    • pp.307-311
    • /
    • 2017
  • Organometal halide perovskite materials, due to the tunability of their electronic and optical properties by control of composition and structure, have taken a position of significant importance in optoelectronic applications such as photovoltaic and lighting devices. Despite numerous studies on the structure - property relationship, however, practical application of these materials in electronic and optical devices is still limited by their processability during fabrication. Achieving nano-sized perovskite particles embedded in a polymer matrix with high loading density and outstanding photoluminescence performance is challenging. Here, we demonstrate that the careful control of nanoparticle formation and growth in the presence of poly(methyl methacrylate) results in perovskite nanoparticle - polymer nanocomposites with very good dispersion and photoluminescence. Furthermore, this approach is found to prevent further growth of perovskite nanoparticles, and thus results in a more uniform film, which enables fabrication using the perovskite nanoparticles.

비진공 나노입자 코팅법을 이용한 CIGS 박막 태양전지 제조 (Fabrication of CIGS Thin Film Solar Cell by Non-Vacuum Nanoparticle Deposition Technique)

  • 안세진;김기현;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.222-224
    • /
    • 2006
  • A non-vacuum process for $Cu(In,Ga)Se_2$ (CIGS) thin film solar cells from nanoparticle precursors was described in this work CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials $(CuI,\;InI_3,\;GaI_3\;and\;Na_2Se)$ in organic solvents, by which fine CIGS nanoparticles of about 20nm in diameter were obtained. The nanoparticle precursors were mixed with organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of CIGS with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents ud to burn the organic binder material. Subsequently, the resultant (porous) CIGS/Mo/glass simple was selenized in a two-zone Rapid Thermal Process (RTP) furnace in order to get a solar ceil applicable dense CIGS absorber layer. Complete solar cell structure was obtained by depositing. The other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.

  • PDF

마이크로입자의 레이저 Ablation으로 형성된 나노입자의 수펴소닉 적층법을 이용한 퍼멀로이 나노구조박막 적층에 관한 연구 (A Study on the Deposition of Permalloy Nanostructured Thin Film Utilizing Supersonic Deposition of Nanoparticles Formed by Laser Ablation of Microparticles)

  • 윤의중;정명희
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.478-483
    • /
    • 2005
  • In this paper, we synthesized 10 to 20 nm diameter NiFe nanoparticles and nanoparticle films utilizing supersonic jet deposition of nanoparticle aerosols generated by laser ablation of $30\;to\;45{\mu}m$ diameter permalloy $(Ni_{81}Fe_{19} \;at\;{\%})$ microparticles. The component and composition of the nanoparticles were characterized by an energy dispersive X-ray spectroscopy. The morphology of the nanoparticles and nanoparticle films was analyzed by a high-resolution transmission electron microscopy and a scanning electron microscopy, respectively. The experimental results showed that the nanoparticles and nanoparticle films have remarkable properties with an excellent preservation of the composition of feedstock permalloy microparticles. The purpose of the present work is to present details on the composition and nanostructural characterizations for NiFe nanoparticles and nanoparticle films prepared by laser ablation of microparticles (LAM).

열처리를 통한 HgSe 나노입자 기반 박막 트랜지스터의 전기적 특성 향상 (Improved Electrical Characteristics of HgSe Nanoparticle-based Thin Film Transistors by Thermal Annealing)

  • 윤정권;조경아;김상식
    • 전기전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.219-223
    • /
    • 2010
  • 본 연구에서는, PVA를 게이트 유전체로 이용하여 백 게이트 (back-gate) 구조의 HgSe 나노입자 박막트랜지스터를 플라스틱 기판위에 제작하였다. 제작된 박막트랜지스터는 $100^{\circ}C$ 에서 5분 동안의 열처리 과정을 통하여 이동도 $16\;cm^2$/Vs, 전류 점멸비 $10^4$의 우수한 특성을 나타내었다. 열처리에 따른 표면 거칠기의 감소가 소자의 전기적 특성향상의 원인이라는 것을 AFM 이미지를 통하여 확인 할 수 있었다. 0.6%의 strain을 기판에 인가하면서 기판의 휘어짐에 따른 전류변화를 관찰하였다.

Dielectrophoresis 방법으로 제작한 Si 나노선과 ZnO 나노입자 필름 기반 p-n 이종접합 다이오드 (A p-n Heterojunction Diode Constructed with A p-Si Nanowire and An n-ZnO Nanoparticle Thin-Film by Dielectrophoresis)

  • 김광은;이명원;윤정권;김상식
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.105-108
    • /
    • 2011
  • Newly-developed fabrication of a p-n heterojunction diode constructed with a p-Si nanowire (NW) and an n-ZnO nanoparticle (NP) thin-film by the dielectrophoresis (DEP) technique is demonstrated in this study. With the bias of 20 Vp-p at the input frequency of 1 MHz, the most efficient assembly of the n-ZnO NPs is shown for the fabrication of the p-n heterojunction diode with a p-Si NW. The p-n heterojunction diode fabricated in this study represents current rectifying characteristics with the turn on voltage of 1.1 V. The diode can be applied to the fabrication of optoelectrical devices such as photodetectors, light-emitting diodes (LEDs), or solar cells based on the high conductivity of the NW and the high surface to volume ratio of the NP thin film.

다공성실리콘내 Fe3O4 나노입자의 압력침착과 채움밀도 모니터링 방법 (Pressure-infiltration of Fe3O4-nanoparticles Into Porous Silicon and a Packing Density Monitoring Technique)

  • 이주현;이재준;이기원
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.385-391
    • /
    • 2015
  • In this paper, we propose a new method to infiltrate $Fe_3O_4$-nanoparticles into a porous silicon film and a monitoring technique to detect packing density of nanoparticles within the film. Recently, research to use porous silicon as a drug carrier or a new functional sensor material by infiltrating $Fe_3O_4$-nanoparticles has been extensively performed. However, it is still necessary to enhance the packing density and to develop a monitoring technique to detect the packing density in real time. In this light, we forcibly injected a nanoparticle solution into a rugate-structured free-standing porous silicon (FPS) film by applying a pressure difference between the two sides of the film. We found that the packing density by the pressure-infiltration method proposed in this paper is enhanced, relative to that by the previous diffusion method. Moreover, a continuous shift in wavelength of the rugate reflectance peak measured from the film surface was observed while the nanoparticle solution was being injected. By exploiting this phenomenon, we could qualitatively monitor the packing density of $Fe_3O_4$-nanoparticles within the FPS film with the injection volume of the nanoparticle solution.

ITO 나노입자 면상발열체의 온도유지에 대한 연구 (Temperature Maintenance of an ITO Nanoparticle Film Heater)

  • 양경환;조경아;임기주;김상식
    • 전기전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.171-173
    • /
    • 2016
  • 본 연구에서는 휴대용 온열기의 에너지 효율을 향상시키기 위하여 indium tin oxide (ITO) 나노입자 페이스트와 PDMS를 이용하여 PDMS/ITO 나노입자 박막 면상발열체를 제작하였고, ITO 나노입자 박막 면상발열체와 PDMS/ITO 나노입자 면상발열체의 온도 유지특성 및 소비전력량을 분석하였다. PDMS층의 낮은 열전도도로 PDMS/ITO 나노입자 박막 면상발열체의 온도유지시간이 ITO 나노입자 박막 면상발열체에 비해 1.5배 증가하였으며, 소비 전력량은 35% 절감되었다.