DOI QR코드

DOI QR Code

Pressure-infiltration of Fe3O4-nanoparticles Into Porous Silicon and a Packing Density Monitoring Technique

다공성실리콘내 Fe3O4 나노입자의 압력침착과 채움밀도 모니터링 방법

  • Lee, Joo Hyeon (Department of Physics, Kongju National University) ;
  • Lee, Jae Joon (Department of Physics, Kongju National University) ;
  • Lee, Ki Won (Department of Physics, Kongju National University)
  • Received : 2015.10.07
  • Accepted : 2015.11.25
  • Published : 2015.11.30

Abstract

In this paper, we propose a new method to infiltrate $Fe_3O_4$-nanoparticles into a porous silicon film and a monitoring technique to detect packing density of nanoparticles within the film. Recently, research to use porous silicon as a drug carrier or a new functional sensor material by infiltrating $Fe_3O_4$-nanoparticles has been extensively performed. However, it is still necessary to enhance the packing density and to develop a monitoring technique to detect the packing density in real time. In this light, we forcibly injected a nanoparticle solution into a rugate-structured free-standing porous silicon (FPS) film by applying a pressure difference between the two sides of the film. We found that the packing density by the pressure-infiltration method proposed in this paper is enhanced, relative to that by the previous diffusion method. Moreover, a continuous shift in wavelength of the rugate reflectance peak measured from the film surface was observed while the nanoparticle solution was being injected. By exploiting this phenomenon, we could qualitatively monitor the packing density of $Fe_3O_4$-nanoparticles within the FPS film with the injection volume of the nanoparticle solution.

Keywords

References

  1. Leigh T. Canham, Properties of porous silicon, INSPEC, London, pp. 89-95, 1997.
  2. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Appl. Phys. Lett., Vol. 57, pp. 1046-1048, 1990. https://doi.org/10.1063/1.103561
  3. A. G. Cullis, L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline silicon", Nature, Vol. 353, pp. 335-338, 1991. https://doi.org/10.1038/353335a0
  4. So-Yeon Cho, Ki-Won Lee, Jae-Wan Kim, Dong-Hyun Kim, "Rugate-structured free-standing porous silicon-based fiber-optic sensor for the simultaneous detection of pressure and organic gases", Sensor Actuat. B-Chem., Vol. 183, pp. 428-433, 2013. https://doi.org/10.1016/j.snb.2013.04.021
  5. Hyeok-Gi Kim, Ki-Won Lee, "Electrostatic gas sensor with a porous silicon diaphragm", Sensor Actuat. B-Chem., Vol. 219, pp. 10-16, 2015. https://doi.org/10.1016/j.snb.2015.04.118
  6. Wenjun Yan, Ming Hu, Dengfeng Wang, Changqing Li, "Room temperature gas sensing properties of porous silicon/ $V_2O_5$ nanorods composite", Appl. Surf. Sci., Vol. 346, pp. 216-222, 2015. https://doi.org/10.1016/j.apsusc.2015.01.020
  7. N. Naderi, M. R. Hashim, T. S. T. Amran, "Enhanced physical properties of porous silicon for improved hydrogen gas sensing", Superlattices Microst., Vol. 51, pp. 626-634, 2012. https://doi.org/10.1016/j.spmi.2012.03.010
  8. Donald S. Gardner, Cary L. Pint, Charles W. Holzwarth, Wei Jin, Zhaohui Chen, Yang Liu, Eric C. Hannah, John L. Gustafson, "Fabrication of porous silicon electrochemical capacitors", US 20140233152 A1, PCT/US2011/067434, 2011.
  9. Ki-Won Lee, So-Yeon Cho, "Fiber-optic pressure sensor using a rugate-structured porous silicon diaphragm coated with PMMA", J. Sensor Sci. & Tech., Vol. 22, No. 3, pp. 227-232, 2013. https://doi.org/10.5369/JSST.2013.22.3.227
  10. Sanketh R. Gowda, Victor Pushparaj, Subramanya Herle, G. Girishkumar, Joseph G. Gordon, Hemtej Gullapalli, Xiaobo Zhan, Pulickel M. Ajayan, Arava Leela Mohana Reddy, "Three-dimensionally engineered porous silicon electrodes for Li ion batteries", Nano Lett., Vol. 12, pp. 6060-6065, 2012. https://doi.org/10.1021/nl302114j
  11. Madhuri Thakur, Mark Isaacson, Steven L. Sinsabaugh, Michael S. Wong, Sibani Lisa Biswal, "Gold-coated porous silicon films as anodes for lithium ion batteries", J. Power Sources, Vol. 205, pp. 426-432, 2012. https://doi.org/10.1016/j.jpowsour.2012.01.058
  12. Yongbae Lee, Kiwon Lee, "Sensing of dissolved-gas concentration in water using a rugate-structured porous silicon membrane", Sensor Actuat. B-Chem., Vol. 202, pp. 417- 425, 2014. https://doi.org/10.1016/j.snb.2014.05.108
  13. Ji-Ho Park, Luo Gu, Geoffrey von Maltzahn, Erkki Ruoslahti, Sangeeta N. Bhatia, Michael J. Sailor, "Biodegradable luminescent porous silicon nanoparticles for in vivo applications", Nat. Mater., Vol. 8, pp.331-336, 2009. https://doi.org/10.1038/nmat2398
  14. Emily J. Anglin, Lingyun Cheng, William R. Freeman, Michael J. Sailor, "Porous silicon in drug delivery devices and materials", Adv. Drug Deliver Rev., Vol. 60, pp. 1266- 1277, 2008. https://doi.org/10.1016/j.addr.2008.03.017
  15. David J Savage, Xuewu Liu, Steaven A Curley, Mauro Ferrari, Rita E Serda, "Porous silicon advances in drug delivery and immunotherapy", Curr. Opin. Pharmacol., Vol. 13, pp. 834-841, 2013. https://doi.org/10.1016/j.coph.2013.06.006
  16. Sazan M. Haidary, Emma P. Corcoles, Nihad K. Ali, "Nanoporous silicon as drug delivery systems for cancer tharapies", J. Nanomater., Vo. 2012, pp. 1-15, 2012.
  17. Adi Tzur-Balter, Zohar Shatsberg, Magarita Beckerman, Ester Segal, Natalie Artzi, "Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues", Nat. Commun., Vol. 6, Article number: 628, 2015.
  18. J. Charrier, P. Pirasteh, Y. G. Boucher, M. Gadonna, "Bragg reflector formed on oxidized porous silicon", Micro Nano Lett., Vol. 7, pp. 105-108, 2012. https://doi.org/10.1049/mnl.2011.0653
  19. Bong-Ju Lee, Bomin Cho, Moonjoo Koh, Honglae Sohn, Young Chan Ko, "Fabrication and optical characterization of a porous silicon distributed Bragg reflector", J. Korean Phys. Soc., Vol. 62, pp. 132-135, 2013. https://doi.org/10.3938/jkps.62.132
  20. Selena Chan, Scott R. Horner, Philippe M. Fauchet, Benjamin L. Miller, "Identification of Gram Negative Bacteria using nanoscale silicon microcavities", J. Am. Chem. Soc., Vol. 123, pp. 11797-11798, 2001. https://doi.org/10.1021/ja016555r
  21. S. Setzu, S. Létant, P. Solsona, R. Romestain, J. C. Vial, "Improvement of the luminescence in p-type as-prepared or dye impregnated porous silicon microvities", J. Lumin., Vol. 80, pp. 129-132, 1999.
  22. Eduardo Lorenzo, Claudio J. Oton, Nestor E. Capuj, Mher Ghulinyan, Daniel Navorro-Urrios, Zeno Gaburro, Lorentzo Pavesi, "Porous silicon-based rugate filters", Appl. Optics, Vol. 44, pp. 5415-5421, 2005. https://doi.org/10.1364/AO.44.005415
  23. Sha Li, Dehong Hu, Jianfeng Huang, Lintao Cai, "Optical sensing nanostructures for porous silicon rugate filters", Nanoscale Res. Lett., Vol. 7, pp. 79, 2012. https://doi.org/10.1186/1556-276X-7-79
  24. S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, M. Gal, "Porous silicon based narrow line-width rugate filters", Opt. Mater, Vol. 29, pp. 619-622, 2007. https://doi.org/10.1016/j.optmat.2005.10.012
  25. P. Granitzer, K. Rumpf, P. Poelt, M. Reissner, "Biocompatible iron oxide/porous silicon nanocomposite with tunable magnetic properties", Phy. Stat. Sol. (c), Vol. 11, pp. 1004-1006, 2014. https://doi.org/10.1002/pssc.201300706
  26. P. Granitzer, K. Rumpf, Y. Tian, G. Akkaraju, J. Coffer, P. Poelt, M. Reissner, "$Fe_3O_4$-nanoparticles within porous silicon: Magnetic and cytotoxicity characterization", Appl. Phys. Lett., Vol. 102, pp. 193110, 2013. https://doi.org/10.1063/1.4807421
  27. Petra Granitzer, Klemens Rumpf, "Magnetic nanoparticles embedded in a silicon matrix", Materials, Vol. 4, pp. 908- 928, 2011. https://doi.org/10.3390/ma4050908
  28. K. Rumpf, P. Granitzer, P. Poelt, M. Reissner, "Specific loading of porous silicon with iron oxide nanoparticles to achieve different blocking temperatures", Thin Solid Films, Vol. 543, pp. 56-58, 2013. https://doi.org/10.1016/j.tsf.2013.02.122