Browse > Article
http://dx.doi.org/10.5369/JSST.2015.24.6.385

Pressure-infiltration of Fe3O4-nanoparticles Into Porous Silicon and a Packing Density Monitoring Technique  

Lee, Joo Hyeon (Department of Physics, Kongju National University)
Lee, Jae Joon (Department of Physics, Kongju National University)
Lee, Ki Won (Department of Physics, Kongju National University)
Publication Information
Journal of Sensor Science and Technology / v.24, no.6, 2015 , pp. 385-391 More about this Journal
Abstract
In this paper, we propose a new method to infiltrate $Fe_3O_4$-nanoparticles into a porous silicon film and a monitoring technique to detect packing density of nanoparticles within the film. Recently, research to use porous silicon as a drug carrier or a new functional sensor material by infiltrating $Fe_3O_4$-nanoparticles has been extensively performed. However, it is still necessary to enhance the packing density and to develop a monitoring technique to detect the packing density in real time. In this light, we forcibly injected a nanoparticle solution into a rugate-structured free-standing porous silicon (FPS) film by applying a pressure difference between the two sides of the film. We found that the packing density by the pressure-infiltration method proposed in this paper is enhanced, relative to that by the previous diffusion method. Moreover, a continuous shift in wavelength of the rugate reflectance peak measured from the film surface was observed while the nanoparticle solution was being injected. By exploiting this phenomenon, we could qualitatively monitor the packing density of $Fe_3O_4$-nanoparticles within the FPS film with the injection volume of the nanoparticle solution.
Keywords
Porous silicon; Nanoparticles; $Fe_3O_4$; Infiltration; Packing density;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Leigh T. Canham, Properties of porous silicon, INSPEC, London, pp. 89-95, 1997.
2 L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Appl. Phys. Lett., Vol. 57, pp. 1046-1048, 1990.   DOI
3 A. G. Cullis, L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline silicon", Nature, Vol. 353, pp. 335-338, 1991.   DOI
4 So-Yeon Cho, Ki-Won Lee, Jae-Wan Kim, Dong-Hyun Kim, "Rugate-structured free-standing porous silicon-based fiber-optic sensor for the simultaneous detection of pressure and organic gases", Sensor Actuat. B-Chem., Vol. 183, pp. 428-433, 2013.   DOI
5 Hyeok-Gi Kim, Ki-Won Lee, "Electrostatic gas sensor with a porous silicon diaphragm", Sensor Actuat. B-Chem., Vol. 219, pp. 10-16, 2015.   DOI
6 Wenjun Yan, Ming Hu, Dengfeng Wang, Changqing Li, "Room temperature gas sensing properties of porous silicon/ $V_2O_5$ nanorods composite", Appl. Surf. Sci., Vol. 346, pp. 216-222, 2015.   DOI
7 N. Naderi, M. R. Hashim, T. S. T. Amran, "Enhanced physical properties of porous silicon for improved hydrogen gas sensing", Superlattices Microst., Vol. 51, pp. 626-634, 2012.   DOI
8 Donald S. Gardner, Cary L. Pint, Charles W. Holzwarth, Wei Jin, Zhaohui Chen, Yang Liu, Eric C. Hannah, John L. Gustafson, "Fabrication of porous silicon electrochemical capacitors", US 20140233152 A1, PCT/US2011/067434, 2011.
9 Ki-Won Lee, So-Yeon Cho, "Fiber-optic pressure sensor using a rugate-structured porous silicon diaphragm coated with PMMA", J. Sensor Sci. & Tech., Vol. 22, No. 3, pp. 227-232, 2013.   DOI
10 Sanketh R. Gowda, Victor Pushparaj, Subramanya Herle, G. Girishkumar, Joseph G. Gordon, Hemtej Gullapalli, Xiaobo Zhan, Pulickel M. Ajayan, Arava Leela Mohana Reddy, "Three-dimensionally engineered porous silicon electrodes for Li ion batteries", Nano Lett., Vol. 12, pp. 6060-6065, 2012.   DOI
11 Madhuri Thakur, Mark Isaacson, Steven L. Sinsabaugh, Michael S. Wong, Sibani Lisa Biswal, "Gold-coated porous silicon films as anodes for lithium ion batteries", J. Power Sources, Vol. 205, pp. 426-432, 2012.   DOI
12 David J Savage, Xuewu Liu, Steaven A Curley, Mauro Ferrari, Rita E Serda, "Porous silicon advances in drug delivery and immunotherapy", Curr. Opin. Pharmacol., Vol. 13, pp. 834-841, 2013.   DOI
13 Yongbae Lee, Kiwon Lee, "Sensing of dissolved-gas concentration in water using a rugate-structured porous silicon membrane", Sensor Actuat. B-Chem., Vol. 202, pp. 417- 425, 2014.   DOI
14 Ji-Ho Park, Luo Gu, Geoffrey von Maltzahn, Erkki Ruoslahti, Sangeeta N. Bhatia, Michael J. Sailor, "Biodegradable luminescent porous silicon nanoparticles for in vivo applications", Nat. Mater., Vol. 8, pp.331-336, 2009.   DOI
15 Emily J. Anglin, Lingyun Cheng, William R. Freeman, Michael J. Sailor, "Porous silicon in drug delivery devices and materials", Adv. Drug Deliver Rev., Vol. 60, pp. 1266- 1277, 2008.   DOI
16 Sazan M. Haidary, Emma P. Corcoles, Nihad K. Ali, "Nanoporous silicon as drug delivery systems for cancer tharapies", J. Nanomater., Vo. 2012, pp. 1-15, 2012.
17 Adi Tzur-Balter, Zohar Shatsberg, Magarita Beckerman, Ester Segal, Natalie Artzi, "Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues", Nat. Commun., Vol. 6, Article number: 628, 2015.
18 J. Charrier, P. Pirasteh, Y. G. Boucher, M. Gadonna, "Bragg reflector formed on oxidized porous silicon", Micro Nano Lett., Vol. 7, pp. 105-108, 2012.   DOI
19 Bong-Ju Lee, Bomin Cho, Moonjoo Koh, Honglae Sohn, Young Chan Ko, "Fabrication and optical characterization of a porous silicon distributed Bragg reflector", J. Korean Phys. Soc., Vol. 62, pp. 132-135, 2013.   DOI
20 Selena Chan, Scott R. Horner, Philippe M. Fauchet, Benjamin L. Miller, "Identification of Gram Negative Bacteria using nanoscale silicon microcavities", J. Am. Chem. Soc., Vol. 123, pp. 11797-11798, 2001.   DOI
21 S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, M. Gal, "Porous silicon based narrow line-width rugate filters", Opt. Mater, Vol. 29, pp. 619-622, 2007.   DOI
22 S. Setzu, S. Létant, P. Solsona, R. Romestain, J. C. Vial, "Improvement of the luminescence in p-type as-prepared or dye impregnated porous silicon microvities", J. Lumin., Vol. 80, pp. 129-132, 1999.
23 Eduardo Lorenzo, Claudio J. Oton, Nestor E. Capuj, Mher Ghulinyan, Daniel Navorro-Urrios, Zeno Gaburro, Lorentzo Pavesi, "Porous silicon-based rugate filters", Appl. Optics, Vol. 44, pp. 5415-5421, 2005.   DOI
24 Sha Li, Dehong Hu, Jianfeng Huang, Lintao Cai, "Optical sensing nanostructures for porous silicon rugate filters", Nanoscale Res. Lett., Vol. 7, pp. 79, 2012.   DOI
25 P. Granitzer, K. Rumpf, P. Poelt, M. Reissner, "Biocompatible iron oxide/porous silicon nanocomposite with tunable magnetic properties", Phy. Stat. Sol. (c), Vol. 11, pp. 1004-1006, 2014.   DOI
26 P. Granitzer, K. Rumpf, Y. Tian, G. Akkaraju, J. Coffer, P. Poelt, M. Reissner, "$Fe_3O_4$-nanoparticles within porous silicon: Magnetic and cytotoxicity characterization", Appl. Phys. Lett., Vol. 102, pp. 193110, 2013.   DOI
27 Petra Granitzer, Klemens Rumpf, "Magnetic nanoparticles embedded in a silicon matrix", Materials, Vol. 4, pp. 908- 928, 2011.   DOI
28 K. Rumpf, P. Granitzer, P. Poelt, M. Reissner, "Specific loading of porous silicon with iron oxide nanoparticles to achieve different blocking temperatures", Thin Solid Films, Vol. 543, pp. 56-58, 2013.   DOI