Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.6.307

Uniform PMMA-CH3NH3PbBr3 Nanoparticle Composite Film for Optoelectronic Application  

Kirakosyan, Artavazd (Department of Materials Science and Engineering, Chungnam National University)
Yun, Seokjin (Department of Materials Science and Engineering, Chungnam National University)
Choi, Jihoon (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.27, no.6, 2017 , pp. 307-311 More about this Journal
Abstract
Organometal halide perovskite materials, due to the tunability of their electronic and optical properties by control of composition and structure, have taken a position of significant importance in optoelectronic applications such as photovoltaic and lighting devices. Despite numerous studies on the structure - property relationship, however, practical application of these materials in electronic and optical devices is still limited by their processability during fabrication. Achieving nano-sized perovskite particles embedded in a polymer matrix with high loading density and outstanding photoluminescence performance is challenging. Here, we demonstrate that the careful control of nanoparticle formation and growth in the presence of poly(methyl methacrylate) results in perovskite nanoparticle - polymer nanocomposites with very good dispersion and photoluminescence. Furthermore, this approach is found to prevent further growth of perovskite nanoparticles, and thus results in a more uniform film, which enables fabrication using the perovskite nanoparticles.
Keywords
$CH_3NH_3PbBr_3$; methyl ammonium bromide; perovskite nanoparticle; luminescence; composite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. C. Papavassiliou, Prog. Solid St. Chem., 25, 125 (1997).   DOI
2 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Bertolotti, N. Masciocchi, A. Guagliardi and M. V. Kovalenko, J. Am. Chem. Soc., 138, 14202 (2016).   DOI
3 A. Mancini, P. Quadrelli, C. Milanese, M. Patrini, G. Guizzetti and L. Malavasi, Inorg. Chem., 54, 8893 (2015).   DOI
4 I. B. Koutselasy, L. Ducassez and G. C. Papavassiliou, J. Phys. Condens. Matter, 8, 1217 (1996).   DOI
5 A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Hoye, K. C. Godel, T. Bein, P. Docampo, S. E. Dutton, M. F. De Volder and R. H. Friend, Nano Lett., 9, 6095 (2015).
6 F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou and Y. Dong, ACS Nano, 9, 4533 (2015).   DOI
7 J. H. Noh, S. H. Im, J. H. Heo and T. N. Mandal and S. I. Seok, Nano Lett., 13, 1764 (2013).   DOI
8 G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.-W. Lim, R. H. Friend and N. C. Greenham, Nano Lett., 15, 2640 (2015).   DOI
9 Y.-H. Kim, H. Cho, J. H. Heo, T.-S. Kim, N. S. Myoung, C.-L. Lee, S. H. Im and T.-W. Lee, Adv. Mater., 27, 1248 (2014).
10 Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, Nature Nanotechnol., 9, 687 (2014).   DOI
11 M. F. Ayguler, M. D. Weber, B. M. D. Puscher, D. D. Medina, P. Docampo and R. D. Costa, J. Phys. Chem. C, 119, 12047 (2015).   DOI
12 J. Li, S. G. R. Bade, X. Shan and Z. Yu, Adv. Mater., 27, 5196 (2015).   DOI
13 G. C. Papavassiliou, G. Pagona, N. Karousis, G. A. Mousdis, I. Koutselas and A. Vassilakopoulou, J. Mater. Chem., 22, 8271 (2012).   DOI
14 S. G. R. Bade, J. Li, X. Shan, Y. Ling, Y. Tian, T. Dilbeck, T. Besara, T. Geske, H. Gao, B. Ma, K. Hanson, T. Siegrist, C. Xu and Z. Yu, ACS Nano, 10, 1795 (2016).   DOI
15 H.-H. Fang, S. Adjokatse, H. Wei, J. Yang, G. R. Blake, J. Huang, J. Even and M. A. Loi, Sci. Adv., 2, e1600534 (2016).   DOI
16 J. H. Kim and S.-H. Kim, Dyes Pigments, 134, 198 (2016).   DOI
17 S. Liu, F. Zheng, I. Grinberg and A. M. Rappe, J. Phys. Chem. Lett., 7, 1460 (2016).   DOI
18 Y.-J. Kim, T.-V. Dang, H.-J. Choi, B.-J. Park, J.-H. Eom, H.-A Song, D. Seol, Y. Kim, S.-H. Shin, J. Nah and S.- G. Yoon, J. Mater. Chem. A, 4, 756 (2016).   DOI
19 R. Ding, H. Liu, X. Zhang, J. Xiao, R. Kishor, H. Sun, B. Zhu, G. Chen, F. Gao, X. Feng, J. Chen, X. Chen, X. Sun and Y. Zheng, Adv. Funct. Mater., 8, 7708 (2016).
20 S. Masi, S. Colella, A. Listorti, V. Roiati, A. Liscio, V. Palermo, A. Rizzo and G. Gigli, Sci. Rep., 5, 7725 (2015).   DOI
21 Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. W and Y. Dong, Adv. Mater., 28, 10710 (2016).   DOI
22 Q. Zhou, Z. Bai, W.-G Lu, Y. Wang, B. Zou and H. Zhong, Adv. Mater., 28, 9163 (2016).   DOI
23 Q. Xue, Z. Hu, C. Sun, Z. Chen, F. Huang, H.-L. Yip and Y. Cao, RSC Adv., 5, 775 (2015).   DOI
24 L. C. Schmidt, A. Pertegas, S. Gonzaez-Carrero, O. Malinkiewicz, S. Agouram, G. M. Espallargas, H. J. Bolink and R. E. Galian, J. Am. Chem. Soc., 136, 850 (2014).   DOI
25 K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton and T. Pullerits, J. Phys. Chem. Lett., 6, 2969 (2015).   DOI
26 A. Kirakosyan, J. Kim, S. W. Lee, I. Swathi, S.-G. Yoon and J. Choi, Cryst. Growth Des., 17, 794 (2017).   DOI
27 J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 13, 1764 (2013).   DOI