• Title/Summary/Keyword: Nano-diamond

Search Result 172, Processing Time 0.037 seconds

A study on the Nano adhesion and Friction at Different Contact Conditions using SPM (SPM을 이용한 접촉조건 변화에 따른 미소응착 및 마찰특성에 관한 연구)

  • 윤의성;박지현;양승호;공호성
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.191-197
    • /
    • 2001
  • Nano adhesion and friction characteristics between SPM(scanning electron microscope) tips and flat plates of different materials were experimentally studied. Tests were performed to measure adhesion and friction in AFM(atomic force microscope) and LFM(lateral force microscope) modes in different conditions of relative humidity. Three different Si$_3$N$_4$ tips (rdaii : 15nm, 22nm and 50 nm) and three different flat plates of Si-wafer(100), W-DLC(tungsten-incorporated diamond-like carbon) and DLC were used. Results generally showed that adhesion and friction increased with the tip radius, and W-DLC and DLC surfaces were superior to Si-wafer. But the adhesion force of Si-wafer showed non linearity with the tip radius while W-DLC and DLC surfaces showed good correlation to the “JKR model”. It was found that high adhesion force between Si-wafer and a large radius of tip was caused by a capillary action due to the condensed water.

A Study on the Machining Characteristic of DLC Coated Mold Material Using FIB (FIB를 이용한 DLC소재의 가공공정에 관한 연구)

  • Hong, W.P.;Choi, B.Y.;Kang, E.G.;Lee, S.W.;Choi, H.Z.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.224-230
    • /
    • 2009
  • FIB has been commonly used as a very powerful tool in the semiconductor industry. It is mainly used for mask repair, device correction, failure analysis and IC error correction, etc. Currently, FIB is not being applied to the fabrication of the micro and nano-structured mold, because of low productivity. And also sputtering rate has been required to fabricate 3D shape. In the paper, we studied the FIB-Sputtering rate according to mold materials. And surface roughness characteristics had been analysed for micro or nano mold fabrication. Si wafer, Glassy Carbon, STAVAX and DLC that have been normally considered as good micro or nano mold materials were used in the study.

Etch Resistance of Mask Layer modified by AFM-based Tribo-Nanolithography in Aqueous Solution (AFM 기반 액중 Tribo nanolithography 에서의 마스크 층 내식각성에 관한 연구)

  • Park Jeong-Woo;Lee Deug-Woo;Kawasegi Noritaka;Morita Noboru
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.268-271
    • /
    • 2005
  • Etch resistance of mask layer on silicon substrate modified by AFM-based Tribo-Nanolithography (TNL) in Aqueous Solution in an aqueous solution was demonstrated. n consists or sequential processes, nano-scratching and wet chemical etching. The simple scratching can form a mask layer on the silicon substrate, which acting as an etching mask. For TNL, a specially designed cantilever with diamond tip, allowing the formation of mask layer on silicon substrate easily by a simple scratching process, has been applied instead of conventional silicon cantilever fur scanning. This study demonstrates how the TNL parameters can affect the etch resistance of mask layer, hence introducing a new process of AFM-based maskless nanolithography in aqueous solution.

  • PDF

Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nano-scratch Process (나노스크래치 공정을 이용하여 극미세 패턴을 제작하기 위한 나노 변형의 유한요소해석)

  • 이정우;강충길;윤성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.139-146
    • /
    • 2004
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation scratch test was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass 7740) were used as specimens, and forming conditions to reduce the elastic recovery and pile-up were proposed. The indenter was modeled as a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. Variables of the nanoindentation scratch test analysis are scratching speed, scratching load, tip radius and tip geometry. The nano-indentation scratch tests were performed by using the Berkovich pyramidal diamond indenter. Comparison between the experimental data and numerical result demonstrated that the FEM approach can be a good model of the nanoindentation scratch test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

Diamond-like Carbon Protective Anti-reflection Coating for Solar Cell Application (태양전지 응용을 위한 DLC(Diamond-like Carbon) 반사방지막의 특성 분석)

  • Choi, Won-Seok;Jeon, Young-Sook;Kim, Kyung-Hae;Yi, Jun-Sin;Heo, Jin-Hee;Chung, Il-Sub;Hong, Byung-You
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1737-1739
    • /
    • 2004
  • Diamond-like carbon (DLC) films were prepared with RF-PECVD (Plasma Enhanced Chemical Vapor Deposition) method on coming glass and silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gases. We examined the effects of $CH_4$ to $H_2$ ratios on tribological and optical properties of the DLC films. The structure and surface morphology of the films were examined using Raman spectroscopy and atomic force microscopy (AFM). The hardness of the DLC film was measured with nano-indentor. The optical properties of DLC thin film were investigated by UV/VIS spectrometer and ellipsometry. And also, solar cells were fabricated using DLC as antireflection coating before and after coating DLC on silicon substrate and compared the efficiency.

  • PDF

Study on the Adhesion of Diamond Like Carbon Films Using the Linear Ion Source with Nitriding Layers (Linear Ion Source에 의해 증착된 Diamond-Like Carbon(DLC) 박막의 질화층 형성에 따른 밀착력 특성 연구)

  • Shin, Chang-Seouk;Park, Min-Seok;Kwon, Ah-Ram;Kim, Seung-Jin;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.190-195
    • /
    • 2011
  • Diamond-like carbon (DLC) has many outstanding properties such as low friction, high wear resistance and corrosion resistance. However, it is difficult to achieve enough adhesion on the metal substrates because of weak bonding between DLC film and the metal substrate. The purpose of this study is to enhance an adhesion of DLC film. For improving adhesion, the substrate was treated by active screen plasma nitriding before DLC film deposing. Nitrided substrates were investigated by Glow Discharge Spectrometer (GDS), Micro-Vickers Hardness. DLC films were deposited on several metals by linear ion source, and characteristics of the films were investigated using nano-indentation, Field Emission Scanning Electron Microscope (FESEM). The adhesion was measured by scratch tester. The adhesion of DLC films was increased when nitriding layer was formed before DLC deposition. Therefore, the adhesion of DLC film can be enhanced as increasing the hardness of materials.

Nano/Micro Friction with the Contact Area (접촉 면적에 따른 나노/마이크로 마찰 특성)

  • Yoon Eui-Sung;Singh R. Arvind;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.209-215
    • /
    • 2005
  • Nano/micro friction with the contact area was studied on Si-wafer (100) and diamond-like carbon (DLC) film. Borosilicate balls of radii $0.32{\mu}m,\;0.5{\mu}m,\;1.25{\mu}m\;and\;2.5{\mu}m$ mounted on the top of AFM tip (NPS) were used for nano-scale contact and Soda Lime glass balls of radii 0.25mm, 0.5mm, 1mm were used for micro-scale contact. At nano-scale, the friction between ball and surface was measured with the applied normal load using an atomic force microscope (AFM), and at micro scale it was measured using ball-on flat type micro-tribotester. All the experiments were conducted at controlled conditions of temperature $(24\pm1^{\circ}C)$ and humidity $(45\pm5\%)$. Friction was measured as a function of applied normal load in the range of 0-160nN at nano scale and in the range of $1000{\mu}N,\; 1500{\mu}N,\;3000{\mu}N\;and\;4800{\mu}N$ at micro scale. Results showed that the friction at nano scale increased with the applied normal load and ball size for both kinds of samples. Similar behavior of friction with the applied normal load and ball size was observed for Si-wafer at micro scale. However, for DLC friction decreased with the ball size. This difference of in behavior of friction in DLC nano- and microscale was attribute to the difference in the operating mechanisms. The evidence of the operating mechanisms at micro-scale were observed using scanning electron microscope (SEM). At micro-scale, solid-solid adhesion was dominant in Silicon-wafer, while plowing in DLC. Contrary to the nano scale that shows almost a wear-less situation, wear was prominent at micro-scale. At nano- and micro-scale, effect of contact area on the friction was discussed with the different applied normal load and ball size.

Determination of the mechanical properties of coated layer in the sheet metal (표면처리강판 코팅층의 기계적 특성결정에 관한 연구)

  • 고영호;이정민;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.343-346
    • /
    • 2004
  • In recent years, various forms of indentation testing have been increasingly used to determine the material properties of specimens. This technique, particularly the nano-indentation method , has been extended to the testing of coating systems in order to calculate the individual properties of the thin coatings and the substrates. However, the interpretation of the test data to achieve this is complex and continues to be a widely studied subject. Based on the finite element method of coated surfaces indented by a Berkovich diamond tip, this paper describes methods for combining FEM and experimental indentation testing to determine coating modulus and hardness independent of substrate effects. Using this proposed methodology, testing and FEM to measure coefficients of friction of sheet steel for outer panel were studied.

  • PDF

Mechanical Machining of Prism Pattern (프리즘 패턴의 기계적 절삭 가공)

  • Yoo Y. E.;Hong S. M.;Je T. J.;Choi D. S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.71-75
    • /
    • 2006
  • In recent, various shapes of pattern in micron or nano scale are adapted in many applications due to their good mechanical or optical properties. Light guide panel (LGP) of the LCD is one of important applications for micro pattern and micro prism shape is one of the typical patterns. The size of the surface patterns in most applications is decreasing to the order of micron or even under micron. On the other hand, the area to be patterned keeps enlarging. These two trends in patterned products require tooling micro patterns on large surface, which has still many technical problems to be solved mainly due to pattern size and the tooling area. In this study, we fabricated prism shape of patterns using diamond cutting tool on some metal core and plastic core like PMMA. Some cutting conditions were investigated including cutting force, cutting depth and speed for different core materials.

Heat Conductivity Test and Conduction Mechanism of Nanofluid (나노유체의 열전도율 실험과 열전달 메커니즘의 제시)

  • Park, Kweon-Ha;Lee, Jin-A;Kim, Hye-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.862-868
    • /
    • 2008
  • Many studies have been conducted to increase heat transfer in fluid. One of the various heat transfer enhancement techniques is suspending fine metallic or nonmetallic solid powder in traditional fluid. Nanofluid is defined as a new kind of heat transfer fluid containing a very small quantity of nanometer particles that are uniformly and stably suspended in a liquid. This study investigates the effect of nanofluid containing diamond, CuNi and CuAg nanometer particles, and proposes the heat transport mechanism of nanofluid. The test result shows that the thermal conductivity of nanofluid is much higher than that of traditional fluid, and the increasing rate of the conductivity is dependent on the conductivity of the solid metal.