Lee G. R.;Shin C. S.;Petrov I.;Greene J, E.;Lee J. J.
Journal of the Korean institute of surface engineering
/
v.38
no.2
/
pp.65-68
/
2005
The effect of crystal orientation and microstructure on the mechanical properties of $TaN_x$ was investigated. $TaN_x$ films were grown on $SiO_2$ substrates by ultrahigh vacuum unbalanced magnetron sputter deposition in mixed $Ar/N_2$ discharges at 20 mTorr (2.67 Pa) and at $350^{\circ}C$. Unlike the Ti-N system, in which TiN is the terminal phase, a large number of N-rich phases in the Ta-N system could lead to layers which had nano-sized lamella structure of coherent cubic and hexagonal phases, with a correct choice of nitrogen fraction in the sputtering mixture and ion irradiation energy during growth. The preferred orientations and the micro-structure of $TaN_x$ layers were controlled by varing incident ion energy $E_i\;(=30eV\~50eV)$ and nitrogen fractions $f_{N2}\;(=0.1\~0.15)$. $TaN_x$ layers were grown on (0002)-Ti underlayer as a crystallographic template in order to relieve the stress on the films. The structure of the $TaN_x$ film transformed from Bl-NaCl $\delta-TaN_x$ to lamellar structured Bl-NaCl $\delta-TaN_x$ + hexagonal $\varepsilon-TaN_x$ or Bl-NaCl $\delta-TaN_x$ + hexagonal $\gamma-TaN_x$ with increasing the ion energy at the same nitrogen fraction $f_{N2}$. The hardness of the films also increased by the structural change. At the nitrogen fraction of $0.1\~0.125$, the structure of the $TaN_x$ films was changed from $\delta-TaN_x\;+\;\varepsilon-TaN_x\;to\;\delta-TaN_x\;+\;\gamma-TaN_x$ with increasing the ion energy. However, at the nitrogen fraction of 0.15 the film structure did not change from $\delta-TaN_x\;+\;\varepsilon-TaN_x$ over the whole range of the applied ion energy. The hardness increased significantly from 21.1 GPa to 45.5 GPa with increasing the ion energy.
Kim, Kyung-Min;Park, Sung-Hyun;Lee, Won-Jae;Shin, Byoung-Chul
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.23
no.8
/
pp.587-592
/
2010
We have fabricated schottky barrier diode (SBDs) using polar (c-plane) and non polar (a-, m-plane) n-type 6H-SiC wafers. Ni/SiC ohmic contact was accomplished on the backside of the SiC wafers by thermal evaporation and annealed for 20minutes at $950^{\circ}C$ in mixture gas ($N_2$ 90% + $H_2$ balanced). The specific contact resistance was $3.6{\times}10^{-4}{\Omega}cm^2$ after annealing at $950^{\circ}C$. The XRD results of the alloyed contact layer show that formation of $NiSi_2$ layer might be responsible for the ohmic contact. The active rectifying electrode was formed by the same thermal evaporation of Ni thin film on topside of the SiC wafers and annealed for 5 minutes at $500^{\circ}C$ in mixture gas ($N_2$ 90% + $H_2$ balanced). The electrical properties of SBDs have been characterized by means of I-V and C-V curves. The forward voltage drop is about 0.95 V, 0.8 V and 0.8 V for c-, a- and m-plane SiC SBDs respectively. The ideality factor (${\eta}$) of all SBDs have been calculated from log(I)-V plot. The values of ideality factor were 1.46, 1.46 and 1.61 for c-, a- and m-plane SiC SBDs, respectively. The schottky barrier height (SBH) of all SBDs have been calculated from C-V curve. The values of SBH were 1.37 eV, 1.09 eV and 1.02 eV for c-, a- and m-plane SiC SBDs, respectively.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2009.06a
/
pp.425-425
/
2009
그라핀을 금속 촉매를 이용하여 상압 혹은 저진공 CVD로 성장할 경우 대형 기판을 쉽게 얻을 수 있으므로 최근 들어 금속 촉매를 이용한 CVD 기술이 재 각광받고 있다. 최근 MIT의 Jing Kong 그룹, Purdue 대학의 Yong P. Chen 그룹, 국내에서는 성균관대학에서 이에 대한 논문을 발표한 바 있다. CVD 방법의 가장 큰 장점은 그라핀 박막의 가장 큰 문제점 중 하나인 대형 기판에 매우 유리하다는 점이다. 본 연구에서는 결함 없는 대형 그라핀기판을 얻기위해 Si/$SiO_2$/Ni 박막위에 그라핀을 LPCVD로 성장하는 실험을 진행하였다. 우선 시료는 Si위에 $SiO_2$를 Sputtering으로 증착하였고, 그 위에 250nm, 300nm두께의 Ni 박막을 e-beam evaporator로 증착하였다. $0.5-1cm^2$ 크기의 샘플을 Thermal CVD 장비를 이용하여 그라핀을 성장하는 실험을 진행하였다. 성장 압력은 95 torr, 성장온도는 $800^{\circ}C$, $850^{\circ}C$, $900^{\circ}C$에서 Hydrocarbon ($C_2H_2$)을 5min, 10min으로 성장시간을 split하였다. Hydrocarbon을 흘리기 전에 Ni grain을 성장하기 위해 성장온도에서 30~60min정도 $H_2$분위기에서 Ni 산화막의 환원 및 어닐링을 진행하였다. 그림.1은 $850^{\circ}C$, 5분간 성장한 그라핀/Ni 샘플의 광학사진이다. 그림.2는 $850^{\circ}C$에서 5min, 10min 성장한 샘플의 Raman spectrum이다. (파장은 514.532nm). 850C 10min 샘플은 G>G' peak 이지만, 5min으로 성장한 샘플의 경우 G'>G peak 임을 알 수 있고, 따라서 5min의 조건에서는 층 두께가 4층 미만의 그라핀 박막을 얻을 수 있음을 보여준다. 또한 G' peak의 위치가 두께가 감소할수록 내려감을 확인할 수 있다. 다만 D peak가 실험한 대부분의 샘플에서 보여서 아직 성장한 그라핀의 결합이 많은 것으로 보인다. 이러한 이유는 성장온도가 낮은 것이 일차 원인으로 생각되며 박막의 균일도 향상과 결함을 줄이기 위한 추가적인 개선 실험을 진행 중이다.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.27
no.2
/
pp.75-79
/
2017
Honeycomb-shaped Ag-grid transparent conductive electrodes (TCEs) were fabricated using two different processes, high density plasma etching and lift-off, and the optical and electrical properties were compared according to the fabrication method. For the fabrication of the Ag-grid TCEs by plasma etching, etch characteristics of the Ag thin film in $10CF_4/5Ar$ inductively coupled plasma (ICP) discharges were studied. The Ag etch rate increased as the power increased at relatively low ICP source power or rf chuck power conditions, and then decreased at higher powers due to either decrease in $Ar^+$ ion energy or $Ar^+$ ion-assisted removal of the reactive F radicals. The Ag-grid TCEs fabricated by the $10CF_4/5Ar$ ICP etching process showed better grid pattern transfer efficiency without any distortion or breakage in the grid pattern and higher optical transmittance values of average 83.3 % (pixel size $30{\mu}m/line$ width $5{\mu}m$) and 71 % (pixel size $26{\mu}m/line$ width $8{\mu}m$) in the visible range of spectrum, respectively. On the other hand, the Ag-grid TCEs fabricated by the lift-off process showed lower sheet resistance values of $2.163{\Omega}/{\square}$ (pixel size $26{\mu}m/line$ width $18{\mu}m$) and $4.932{\Omega}/{\square}$ (pixel size $30{\mu}m/line$ width $5{\mu}m$), respectively.
Titanium oxide film was deposited on the commercially pure titanium (cp-Ti) by thermal oxidation method for its medical application. The cp-Ti disks were cleaned and then heat-treated at the temperatures of 500, 550, 600, 650, and 700${\circ}C$, respectively, for 10 min in air or Ar. To test the ability of calcium phosphate formation, the specimens were immersed in the Eagle's minimum essential medium solution at 36.5${\circ}C$ for 15 days. The morphology and chemical composition of the surfaces before and after soaking were analyzed by using FE-SEM and EDS. The in-vitro formation of carbonated calcium phosphate on the thin films containing nano-sized $TiO_2$ crystals was identified.
Joo, Young Jun;Park, Cheong Ho;Jeong, Joo Jin;Kang, Seung Min;Ryu, Gil Yeol;Kang, Sung;Kim, Cheol Jin
Journal of the Korean Crystal Growth and Crystal Technology
/
v.25
no.4
/
pp.127-134
/
2015
Aluminum nitride (AlN) single crystals have attracted much attention for a next-generation semiconductor application because of wide bandgap (6.2 eV), high thermal conductivity ($285W/m{\cdot}K$), high electrical resistivity (${\geq}10^{14}{\Omega}{\cdot}cm$), and high mechanical strength. The bulk AlN single crystals or thin film templates have been mainly grown by PVT (sublimation) method, flux method, solution growth method, and hydride vapor phase epitaxy (HVPE) method. Since AlN suffers difficulty in commercialization due to the defects that occur during single crystal growth, crystalline quality improvement via defects analyses is necessary. Etch pit density (EPD) analysis showed that the growth misorientations and the defects in the AlN surface exist. Transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) analyses were employed to investigate the overall crystalline quality and various kinds of defects. TEM studies show that the morphology of the AlN is clearly influenced by stacking fault, dislocation, second phase, etc. In addition EBSD analysis also showed that the zinc blende polymorph of AlN exists as a growth defects resulting in dislocation initiator.
60 nm- and 20 nm-thick hydrogenated amorphous silicon (a-Si:H) layers were deposited on 200 nm $SiO_2/Si$ substrates using ICP-CVD (inductively coupled plasma chemical vapor deposition). A 10 nm-Ni layer was then deposited by e-beam evaporation. Finally, 10 nm-Ni/60 nm a-Si:H/200 nm-$SiO_2/Si$ and 10 nm-Ni/20 nm a-Si:H/200 nm-$SiO_2/Si$ structures were prepared. The samples were annealed by rapid thermal annealing for 40 seconds at $200{\sim}500^{\circ}C$ to produce $NiSi_x$. The resulting changes in sheet resistance, microstructure, phase, chemical composition and surface roughness were examined. The nickel silicide on a 60 nm a-Si:H substrate showed a low sheet resistance at T (temperatures) >$450^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate showed a low sheet resistance at T > $300^{\circ}C$. HRXRD analysis revealed a phase transformation of the nickel silicide on a 60 nm a-Si:H substrate (${\delta}-Ni_2Si{\rightarrow}{\zeta}-Ni_2Si{\rightarrow}(NiSi+{\zeta}-Ni_2Si)$) at annealing temperatures of $300^{\circ}C{\rightarrow}400^{\circ}C{\rightarrow}500^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate had a composition of ${\delta}-Ni_2Si$ with no secondary phases. Through FE-SEM and TEM analysis, the nickel silicide layer on the 60 nm a-Si:H substrate showed a 60 nm-thick silicide layer with a columnar shape, which contained both residual a-Si:H and $Ni_2Si$ layers, regardless of annealing temperatures. The nickel silicide on the 20 nm a-Si:H substrate had a uniform thickness of 40 nm with a columnar shape and no residual silicon. SPM analysis shows that the surface roughness was < 1.8 nm regardless of the a-Si:H-thickness. It was confirmed that the low temperature silicide process using a 20 nm a-Si:H substrate is more suitable for thin film transistor (TFT) active layer applications.
In this paper, a simple method of forming a solution-based carbon nanotube (CNT) for use as a conductive material for electronic devices was studied. The CNT thin film coating was performed on the glass by applying the spin coating method and the argon atmospheric pressure plasma process. In order to observe changes in electrical and physical properties according to the number of coatings, samples formed in the same manner from times 1 to 5 were prepared, and surface shape, reflectance, transmittance, absorbance, and sheet resistance were measured for each sample. As the number of coatings increased, the transmittance decreased, and the reflectance and absorptivity increased in the entire measurement wavelength range. Also, as the wavelength decreases, the transmittance decreases, and the reflectance and absorption increase. In the case of electrical properties, it was confirmed that the conductivity was significantly improved when the second coating was applied. In conclusion, in order to replace CNT with a transparent electrode, it is necessary to consider the number of coatings in consideration of reflectivity and electrical conductivity together, and it can be seen that 2 times is optimal.
Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.