DOI QR코드

DOI QR Code

Comparison of characteristics of silver-grid transparent conductive electrodes for display devices according to fabrication method

제조공법에 따른 디스플레이 소자용 silver-grid 투명전극층의 특성 비교

  • Choi, Byoung Su (Department of Nano Fusion Technology, Pusan National University) ;
  • Choi, Seok Hwan (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Ryu, Jeong Ho (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Cho, Hyun (Department of Nanomechatronics Engineering, Pusan National University)
  • 최병수 (부산대학교 나노융합기술학과) ;
  • 최석환 (부산대학교 나노메카트로닉스공학과) ;
  • 류정호 (한국교통대학교 신소재공학과) ;
  • 조현 (부산대학교 나노메카트로닉스공학과)
  • Received : 2017.04.13
  • Accepted : 2017.04.19
  • Published : 2017.04.30

Abstract

Honeycomb-shaped Ag-grid transparent conductive electrodes (TCEs) were fabricated using two different processes, high density plasma etching and lift-off, and the optical and electrical properties were compared according to the fabrication method. For the fabrication of the Ag-grid TCEs by plasma etching, etch characteristics of the Ag thin film in $10CF_4/5Ar$ inductively coupled plasma (ICP) discharges were studied. The Ag etch rate increased as the power increased at relatively low ICP source power or rf chuck power conditions, and then decreased at higher powers due to either decrease in $Ar^+$ ion energy or $Ar^+$ ion-assisted removal of the reactive F radicals. The Ag-grid TCEs fabricated by the $10CF_4/5Ar$ ICP etching process showed better grid pattern transfer efficiency without any distortion or breakage in the grid pattern and higher optical transmittance values of average 83.3 % (pixel size $30{\mu}m/line$ width $5{\mu}m$) and 71 % (pixel size $26{\mu}m/line$ width $8{\mu}m$) in the visible range of spectrum, respectively. On the other hand, the Ag-grid TCEs fabricated by the lift-off process showed lower sheet resistance values of $2.163{\Omega}/{\square}$ (pixel size $26{\mu}m/line$ width $18{\mu}m$) and $4.932{\Omega}/{\square}$ (pixel size $30{\mu}m/line$ width $5{\mu}m$), respectively.

고밀도 플라즈마 식각 및 lift-off 두 가지 공정으로 honeycomb 형상의 Ag-grid 투명전극층을 제작하였고 제조 공법에 따른 광학적 및 전기적 특성을 비교하였다. 플라즈마 식각 조건 선정을 위하여 Ag 박막의 $10CF_4/5Ar$ 유도결합 플라즈마 식각특성을 조사하였다. 비교적 낮은 ICP source power 또는 rf chuck power 영역에서는 power 증가에 따라 Ag 식각속도가 증가하였고, 높은 power 조건에서는 $Ar^+$ 이온 에너지 감소 또는 $Ar^+$ 이온에 의한 F radical 제거로 인해 식각속도가 감소하였다. $10CF_4/5Ar$ 플라즈마 식각 공정에 의해 제작된 Ag-grid 전극층은 lift-off 공정으로 제작된 전극층에 비해 grid 패턴 형상의 왜곡이나 단절이 없는 더 우수한 grid 패턴 전사 효율과 가시광선 영역에서 더 높은 83.3 %(pixel 크기 $30{\mu}m$/선폭 $5{\mu}m$)와 71 %(pixel 크기 $26{\mu}m$/선폭 $8{\mu}m$)의 광투과율을 각각 나타내었다. 반면에 lift-off 공정으로 제작된 Ag-grid 전극층은 플라즈마 식각 공정 시편보다 더 우수한 $2.163{\Omega}/{\square}$(pixel 크기 $26{\mu}m$/선폭 $8{\mu}m$)과 $4.932{\Omega}/{\square}$(pixel 크기 $30{\mu}m$/선폭 $5{\mu}m$)의 면저항 특성을 나타내었다.

Keywords

References

  1. S. Calnan and A.N. Tiwari, "High mobility transparent conducting oxides for thin film solr cells", Thin Solid Films 518 (2010) 1839. https://doi.org/10.1016/j.tsf.2009.09.044
  2. C.G. Granqvist, "Transparent conductors as solar energy materials: A panoramic review", Solar Energy Mater. Solar Cells 91 (2007) 1529. https://doi.org/10.1016/j.solmat.2007.04.031
  3. J.H. Kim, T.W. Kang, S.N. Kwon, S.I. Na, Y.Z. Yoo, H.S. Im and T.Y. Seong, "Transparent conductive ITO/ Ag/ITO electrode deposited at room temperature for organic solar cells", J. Electron. Mater. 46 (2017) 306. https://doi.org/10.1007/s11664-016-4956-9
  4. T.B. Song and N. Li, "Emerging transparent conducting electrodes for organic light emitting diodes", Electronics 3 (2014) 190. https://doi.org/10.3390/electronics3010190
  5. L. Gomes, A. Marques, A. Branco, J. Araujo, M. Simoes, S. Cardoso, F. Silva, I. Henriques, C.A.T. Laia and C. Costa, "IZO deposition by RF and DC sputtering on paper and application on flexible electrochromic devices", Displays 34 (2013) 326. https://doi.org/10.1016/j.displa.2013.06.004
  6. J.R. Sheats and D.B. Roitman, "Failure modes in polymer-based light-emitting diodes", Synthetic Metals 95 (1998) 79. https://doi.org/10.1016/S0379-6779(98)00031-9
  7. H. Aziz and Z.D. Popovic, "Degradation phenomena in small-molecule organic light-emitting devices", Chem. Mater. 16 (2004) 4522. https://doi.org/10.1021/cm040081o
  8. R. Paetzold, K. Heuser, D. Henseler, S. Roeger and G. Wittmann, "Performance of flexible polymeric lightemitting diodes under bending conditions", Appl. Phys. Lett. 82 (2003) 3342. https://doi.org/10.1063/1.1574400
  9. A.S. Alshammari, M. Shkunov and S.R.P. Silva, "Inkjet printed PEDOT:PSS/MWCNT nano-composites with aligned carbon nanotubes and enhanced conductivity", Phys. Stat. Sol. RRL 8 (2014) 1476.
  10. S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland and J.N. Coleman, "Sliver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios", ACS Nano 3 (2009) 1767. https://doi.org/10.1021/nn900348c
  11. H. Gguo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai and D.L. Peng, "Copper nanowires as fully transparent conductive electrodes", Sci. Rep. 3 (2013) 2323. https://doi.org/10.1038/srep02323
  12. A. California, A.S. Silva, J. Concalves, A. Branco, C. Phinheiro and C. Costa, "Silver grid electrodes for fast switching ITO free electrochromic devices", Solar Energy Mater. Solar Cells 153 (2016) 51.
  13. F.L.M. Sam, M.A. Razali, K.D.G.I. Jayawardena, C.A. Mills, L.J. Rozanski, M.J. Beliatis and S.R.P. Silva, "Silver grid transparent conducting electrodes for organic light emitting diodes", Org. Electron. 15 (2014) 3492. https://doi.org/10.1016/j.orgel.2014.09.036
  14. L. Hu, H. Wu and Y. Chi, "Metal nanogrids, nanowires, and nanofibers for transparent electrodes", MRB Bull. 36 (2011) 760. https://doi.org/10.1557/mrs.2011.234
  15. D.S. Ghosh, T.L. Chen and V. Pruneri, "High figure-ofmerit ultrathin metal transparent electrodes incorporating a conductive grid", Appl. Phys. Lett. 96 (2010) 041109. https://doi.org/10.1063/1.3299259
  16. B.S. Choi, H.L. Park and H. Cho, "Parametric study of inductively coupled plasma etching of GaN epitaxy layer", J. Korean Cryst. Growth Cryst. Technol. 26 (2016) 145. https://doi.org/10.6111/JKCGCT.2016.26.4.145
  17. J.C. Park, B.W. Lee, B.I. Kim and H. Cho, "Fluorinebased inductively coupled plasma etching of ZnO film", J. Korean Cryst. Growth Cryst. Technol. 21 (2011) 230. https://doi.org/10.6111/JKCGCT.2011.21.6.230
  18. J.W. Lim, Y.T. Lee, R. Pandey, T.H. Yoo, B.I. Sang, B.K. Ju, D.K. Hwang and W.K. Choi, "Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells", Opt. Exp. 22 (2014) 26891. https://doi.org/10.1364/OE.22.026891