Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2017.27.2.075

Comparison of characteristics of silver-grid transparent conductive electrodes for display devices according to fabrication method  

Choi, Byoung Su (Department of Nano Fusion Technology, Pusan National University)
Choi, Seok Hwan (Department of Nanomechatronics Engineering, Pusan National University)
Ryu, Jeong Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
Cho, Hyun (Department of Nanomechatronics Engineering, Pusan National University)
Abstract
Honeycomb-shaped Ag-grid transparent conductive electrodes (TCEs) were fabricated using two different processes, high density plasma etching and lift-off, and the optical and electrical properties were compared according to the fabrication method. For the fabrication of the Ag-grid TCEs by plasma etching, etch characteristics of the Ag thin film in $10CF_4/5Ar$ inductively coupled plasma (ICP) discharges were studied. The Ag etch rate increased as the power increased at relatively low ICP source power or rf chuck power conditions, and then decreased at higher powers due to either decrease in $Ar^+$ ion energy or $Ar^+$ ion-assisted removal of the reactive F radicals. The Ag-grid TCEs fabricated by the $10CF_4/5Ar$ ICP etching process showed better grid pattern transfer efficiency without any distortion or breakage in the grid pattern and higher optical transmittance values of average 83.3 % (pixel size $30{\mu}m/line$ width $5{\mu}m$) and 71 % (pixel size $26{\mu}m/line$ width $8{\mu}m$) in the visible range of spectrum, respectively. On the other hand, the Ag-grid TCEs fabricated by the lift-off process showed lower sheet resistance values of $2.163{\Omega}/{\square}$ (pixel size $26{\mu}m/line$ width $18{\mu}m$) and $4.932{\Omega}/{\square}$ (pixel size $30{\mu}m/line$ width $5{\mu}m$), respectively.
Keywords
Ag-grid transparent conductive electrodes; High density plasma etching; Lift-off; Optical transmittance; Sheet resistance;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Calnan and A.N. Tiwari, "High mobility transparent conducting oxides for thin film solr cells", Thin Solid Films 518 (2010) 1839.   DOI
2 C.G. Granqvist, "Transparent conductors as solar energy materials: A panoramic review", Solar Energy Mater. Solar Cells 91 (2007) 1529.   DOI
3 J.H. Kim, T.W. Kang, S.N. Kwon, S.I. Na, Y.Z. Yoo, H.S. Im and T.Y. Seong, "Transparent conductive ITO/ Ag/ITO electrode deposited at room temperature for organic solar cells", J. Electron. Mater. 46 (2017) 306.   DOI
4 T.B. Song and N. Li, "Emerging transparent conducting electrodes for organic light emitting diodes", Electronics 3 (2014) 190.   DOI
5 L. Gomes, A. Marques, A. Branco, J. Araujo, M. Simoes, S. Cardoso, F. Silva, I. Henriques, C.A.T. Laia and C. Costa, "IZO deposition by RF and DC sputtering on paper and application on flexible electrochromic devices", Displays 34 (2013) 326.   DOI
6 J.R. Sheats and D.B. Roitman, "Failure modes in polymer-based light-emitting diodes", Synthetic Metals 95 (1998) 79.   DOI
7 H. Aziz and Z.D. Popovic, "Degradation phenomena in small-molecule organic light-emitting devices", Chem. Mater. 16 (2004) 4522.   DOI
8 R. Paetzold, K. Heuser, D. Henseler, S. Roeger and G. Wittmann, "Performance of flexible polymeric lightemitting diodes under bending conditions", Appl. Phys. Lett. 82 (2003) 3342.   DOI
9 A.S. Alshammari, M. Shkunov and S.R.P. Silva, "Inkjet printed PEDOT:PSS/MWCNT nano-composites with aligned carbon nanotubes and enhanced conductivity", Phys. Stat. Sol. RRL 8 (2014) 1476.
10 S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland and J.N. Coleman, "Sliver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios", ACS Nano 3 (2009) 1767.   DOI
11 H. Gguo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai and D.L. Peng, "Copper nanowires as fully transparent conductive electrodes", Sci. Rep. 3 (2013) 2323.   DOI
12 A. California, A.S. Silva, J. Concalves, A. Branco, C. Phinheiro and C. Costa, "Silver grid electrodes for fast switching ITO free electrochromic devices", Solar Energy Mater. Solar Cells 153 (2016) 51.
13 F.L.M. Sam, M.A. Razali, K.D.G.I. Jayawardena, C.A. Mills, L.J. Rozanski, M.J. Beliatis and S.R.P. Silva, "Silver grid transparent conducting electrodes for organic light emitting diodes", Org. Electron. 15 (2014) 3492.   DOI
14 L. Hu, H. Wu and Y. Chi, "Metal nanogrids, nanowires, and nanofibers for transparent electrodes", MRB Bull. 36 (2011) 760.   DOI
15 D.S. Ghosh, T.L. Chen and V. Pruneri, "High figure-ofmerit ultrathin metal transparent electrodes incorporating a conductive grid", Appl. Phys. Lett. 96 (2010) 041109.   DOI
16 B.S. Choi, H.L. Park and H. Cho, "Parametric study of inductively coupled plasma etching of GaN epitaxy layer", J. Korean Cryst. Growth Cryst. Technol. 26 (2016) 145.   DOI
17 J.C. Park, B.W. Lee, B.I. Kim and H. Cho, "Fluorinebased inductively coupled plasma etching of ZnO film", J. Korean Cryst. Growth Cryst. Technol. 21 (2011) 230.   DOI
18 J.W. Lim, Y.T. Lee, R. Pandey, T.H. Yoo, B.I. Sang, B.K. Ju, D.K. Hwang and W.K. Choi, "Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells", Opt. Exp. 22 (2014) 26891.   DOI