Browse > Article

Lamellar Structured TaN Thin Films by UHV UBM Sputtering  

Lee G. R. (Materials Science and Engineering Department, Seoul National University)
Shin C. S. (Materials Science and Engineering Department, University of illinois at Urbana-Champaign)
Petrov I. (Materials Science and Engineering Department, University of illinois at Urbana-Champaign)
Greene J, E. (Materials Science and Engineering Department, University of illinois at Urbana-Champaign)
Lee J. J. (Materials Science and Engineering Department, Seoul National University)
Publication Information
Journal of the Korean institute of surface engineering / v.38, no.2, 2005 , pp. 65-68 More about this Journal
Abstract
The effect of crystal orientation and microstructure on the mechanical properties of $TaN_x$ was investigated. $TaN_x$ films were grown on $SiO_2$ substrates by ultrahigh vacuum unbalanced magnetron sputter deposition in mixed $Ar/N_2$ discharges at 20 mTorr (2.67 Pa) and at $350^{\circ}C$. Unlike the Ti-N system, in which TiN is the terminal phase, a large number of N-rich phases in the Ta-N system could lead to layers which had nano-sized lamella structure of coherent cubic and hexagonal phases, with a correct choice of nitrogen fraction in the sputtering mixture and ion irradiation energy during growth. The preferred orientations and the micro-structure of $TaN_x$ layers were controlled by varing incident ion energy $E_i\;(=30eV\~50eV)$ and nitrogen fractions $f_{N2}\;(=0.1\~0.15)$. $TaN_x$ layers were grown on (0002)-Ti underlayer as a crystallographic template in order to relieve the stress on the films. The structure of the $TaN_x$ film transformed from Bl-NaCl $\delta-TaN_x$ to lamellar structured Bl-NaCl $\delta-TaN_x$ + hexagonal $\varepsilon-TaN_x$ or Bl-NaCl $\delta-TaN_x$ + hexagonal $\gamma-TaN_x$ with increasing the ion energy at the same nitrogen fraction $f_{N2}$. The hardness of the films also increased by the structural change. At the nitrogen fraction of $0.1\~0.125$, the structure of the $TaN_x$ films was changed from $\delta-TaN_x\;+\;\varepsilon-TaN_x\;to\;\delta-TaN_x\;+\;\gamma-TaN_x$ with increasing the ion energy. However, at the nitrogen fraction of 0.15 the film structure did not change from $\delta-TaN_x\;+\;\varepsilon-TaN_x$ over the whole range of the applied ion energy. The hardness increased significantly from 21.1 GPa to 45.5 GPa with increasing the ion energy.
Keywords
TaN; Sputtering; Lamellar; Stress; Hardness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. W. Kim, J. Moser, I. Petrov, J. E. Greene, J. Vac. Sci. Technol. A, 12 (1994) 3169   DOI   ScienceOn
2 J.-E. Sundgren, B.-O. Johansson, A. Rockett, S. A. Barnett, J. E. Greene, in Physics and Chemistry of Protective Coatings, Edited by J. E. Greene, W. D. Sproul, and J. A. Thornton (American Institute of Physics, New York), 149 (1986) 95
3 B. Mehrotra, J. Stimmell, J. Vac. Sci. Technol. B, 5 (1987) 1736   DOI
4 X. Chen, H. L. Frisch, A. E. Kaloyeros, B. Arkles, J. Sullivan, J. Vac. Sci. Technol. B, 17 (1999) 182   DOI
5 M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chuang, H. T. Chiu, J. Appl. Phys., 79 (1996) 6932   DOI
6 N. Terao, Jpn. J. Appl. Phys., 10 (1971) 248   DOI
7 I. Petrov, F. Adibi, J. E. Greene, W. D. Sproul, W.-D. Munz, J. Vac. Sci. Technol., A, 10 (1992) 3283   DOI
8 C.-S. Shin, D. Gall, P. Desjardins, A. Vailionis, H. Kim, M. Oden, I. Petrov, J. E. Greene, Appl. Phys. Lett., 75 (1999) 3808   DOI   ScienceOn
9 X. Sun, E. Kolawa, J.-S. Chen, J. S. Reid, M.-A. Nicolet, Thin Solid Films, 236 (1993) 347   DOI   ScienceOn
10 W. C. Oliver, G. M. Pharr, J. Mater. Res., 7 (1992) 1564   DOI
11 D. Gerstenberg, C. J. Calbick, J. Appl. Phys., 35 (1964) 402   DOI
12 K. Baba, R. Hatada, K. Udoh, K. Yasuda, Nucl. Instrum. Methods Phys. Res. B, 127/128 (1997) 841   DOI   ScienceOn
13 T. B. Massalski, in Binary Alloy Phase Diagrams, edited by T. B. Massalski (ASM International, Ohio), (1990) 2703
14 I. C. Noyan, T. C. Huang, B. R. York, Critical Reviews in Solid State and Materials Sciences, 20 (1995) 125   DOI   ScienceOn