• Title/Summary/Keyword: NPC-Level Inverter

Search Result 119, Processing Time 0.019 seconds

Cancellation of Common-Mode Voltages in Three-Level NPC Inverters with Auxiliary Leg (3-레벨 NPC 인버터에서 보조 레그를 이용한 공통 모드 전압 제거)

  • Le, Quoe Anh;Le, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.487-488
    • /
    • 2016
  • In this paper, a new active circuit for common-mode voltage (CMV) cancellation in three-level NPC (neutral-point clamped) inverters is proposed, which can avoid the saturation of the common-mode transformer (CMT). The proposed circuit utilizes an additional three-level leg to produce the compensating CMV of the NPC inverters, which eliminates the CMV of the inverter through the CMT.

  • PDF

Output Voltage Harmonics Analysis of NPC Type Three-level Inverter (NPC형 3레벨 인버터의 출력전압 고조파 분석)

  • Kwon, Kyoung-Min;Choi, Jae-Ho;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.472-480
    • /
    • 2009
  • This paper describes the overmodulative SVPWM technique and harmonics analyses of three phase NPC type three-level inverter to the modulation index. Three phase NPC type three-level inverter adopted SVPWM to extend the linear region to 0.907, moreover, the following voltage compensation using Fourier series was adopted in the region of overmodulation to make it work to six-step level. PD type of multi carrier method is used with the double Fourier series for the analysis of output power harmonics characteristic. Simulation was performed by PSIM, and the harmonics characteristics of 3-level inverter in each region are analyzed. The side band harmonics of carrier frequency are dominant in the linear region, but these harmonic components are decreased as the inveter goes to overmodulation region, and the harmonics due to the fundamental frequency is increased gradually at the same time. The harmonic analyses are verified through the simulation and experimental results under the same condition.

A Study on the Neutral Point Potential Variation under Open-Circuit Fault of Three-Level NPC Inverter (3레벨 NPC 인버터 개방성 고장 시 중성점 전압변동에 관한 연구)

  • Park, Jong-Je;Park, Byoung-Gun;Ha, Dong-Hyun;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.333-342
    • /
    • 2009
  • Three-level Diode Clamped Multilevel Inverter, generally known as Neutral-Point-Clamped (NPC) Inverter, has an inherent problem causing Neutral Point (NP) potential variation. Until now, in many literatures NP potential problem has been investigated and lots of solutions have also been proposed. However, under fault and fault tolerant control, distinctive feature for NP potential variation problem was rarely published from the standpoint of reliability. In this paper, NP potential is analytically investigated both normal and faulty conditions under carrier based PWM. Subsequently, relation between fault detection time and size of capacitor is analyzed. This information is explored by simulation and experiment results, which contribute to enhance the reliability of inverter system.

Fast Voltage-Balancing Scheme for a Carrier-Based Modulation in Three-Phase and Single-Phase NPC Three-Level Inverters

  • Chen, Xi;Huang, Shenghua;Jiang, Dong;Li, Bingzhang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1986-1995
    • /
    • 2018
  • In this paper, a novel neutral-point voltage balancing scheme for NPC three-level inverters using carrier-based sinusoidal pulse width modulation (SPWM) method is developed. The new modulation approach, based on the obtained expressions of zero sequence voltage in all six sectors, can significantly suppress the low-frequency voltage oscillation in the neutral point at high modulation index and achieve a fast voltage-balancing dynamic performance. The implementation of the proposed method is very simple. Another attractive feature is that the scheme can stably control any voltage difference between the two dc-link capacitors within a certain range without using any extra hardware. Furthermore, the presented scheme is also applicable to the single-phase NPC three-level inverter. It can maintain the neutral-point voltage balance at full modulation index and improve the voltage-balancing dynamic performance of the single-phase NPC three-level inverter. The performance of the proposed strategy and its benefits over other previous techniques are verified experimentally.

Novel Level-Shift PWM for Power and Loss Distribution of Cascaded NPC/H-bridge Multi Level Inverter (Cascaded NPC/H-bridge 멀티 레벨 인버터의 전력 및 손실 분배를 위한 새로운 Level-Shift PWM 기법)

  • Ha, Jae-Ok;Kang, Jin-Wook;Hyun, Seung-Wook;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.270-271
    • /
    • 2017
  • Cascaded NPC/H-bridge 인버터의 기존 Level-Shift PWM에서는 한 stack에서 전력 및 손실 불균형이 발생하게 된다. 이에 따라 손실 불균형을 개선하기 위해 새로운 Level Shift PWM을 개발하였고, PSIM 9.14를 통해 기존의 PWM 기법들과 비교 분석 하였다.

  • PDF

Loss Distribution based on electro thermal model of 3-level ANPC PWM inverter switches for Off Shore Wind Power System (해상 풍력 발전용 3-level ANPC PWM inverter 스위칭 소자의 열 분석 모델링을 통한 손실 분배 기법)

  • Hyun, Seung-Wook;Lee, Hee-Jun;Sin, Soo-Cheol;Lee, Jong-Mu;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.7-8
    • /
    • 2012
  • 본 논문에서는 3레벨 NPC(Neutral Point Clamped)와 Active NPC 인버터의 스위치 손실 분배 기법에 따른 출력전력 분석을 하였다. 기존 3레벨 NPC 인버터의 경우 특정 불균형한 스위치 발열 때문에 전력밀도를 높이 설계할 수 없다. 따라서 본 논문에서는 ANPC inverter의 손실 분배기법을 적용하여 시뮬레이션으로 검증하였다.

  • PDF

Common-Mode Voltage Elimination for Medium-Voltage Three-Level NPC Inverters Based on an Auxiliary Circuit

  • Le, Quoc Anh;Lee, Sangmin;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2076-2084
    • /
    • 2016
  • In this paper, a novel scheme to eliminate common-mode voltage (CMV) is proposed for three-level neutral-point clamped (NPC) inverters. In the proposed scheme, a low-power full-bridge converter is utilized to produce compensatory voltage for CMV, which is injected into an NPC inverter through a single-phase four-winding transformer. With the proposed circuit, the power range for applications is not limited, and the maximum modulation index of the inverter is not reduced. These features are suitable for high-power medium-voltage machine drives. The effectiveness of the proposed method is verified by simulation and experimental results.

Modified Unipolar Carrier-Based PWM Strategy for Three-Level Neutral-Point-Clamped Voltage Source Inverters

  • Srirattanawichaikul, Watcharin;Premrudeepreechacharn, Suttichai;Kumsuwan, Yuttana
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.489-500
    • /
    • 2014
  • This paper presents a simple modified unipolar carrier-based pulsewidth modulation (CB-PWM) strategy for the three-level neutral-point-clamped (NPC) voltage source inverter (VSI). Analytical expressions for the relationship between modulation reference signals and output voltages are derived. The proposed modulation technique for the three-level NPC VSI includes the maximum and minimum of the three-phase sinusoidal reference voltages with zero-sequence voltage injection concept. The proposed modified CB-PWM strategy incorporates a novel method that requires only of one triangular carrier wave for generate the gating pulses in three-level NPC VSI. It has the advantages of being simplifying the algorithm with no need of complex two/multi-carrier pulsewidth modulation or space vector modulation (SVM) and it's also simple to implement. The possibility of the proposed CB-PWM technique has been verified though computer simulation and experimental results.

A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverter at Low Modulation Index

  • C.S. Ma;Kim, T.J.;D.W. Kang;D.S. Hyun
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.205-214
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM (DPWM) to balance the DC-link voltage of three-level neutral-point-clamped (NPC) inverter at low modulation index. It introduces new DPWM methods in multi-level inverter and one of them is used for balancing the DC-link voltage. The current flowing in the neutral point of the DC-link causes the fluctuation of the DC-link voltage of the NPC inverter. The proposed DPWM method changes the path and duration time of the neutral point current, which makes the overall fluctuation of the DC-link voltage zero during a sampling time of the reference voltage vector. Therefore, by using the proposed strategy, the voltage of the DC-link can be balanced fairly well and the voltage ripple of the DC-link is also reduced significantly. Moreover, comparing with conventional methods which have to perform the complicated calculation, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by the experiment.

NPC Type 3 Level Inverter Operation in Overmodulation Region (NPC형 3레벨 인버터 과변조영역운전)

  • Lee, Jae-Moon;Choi, Jae-Ho;Lee, Eun-Kyu;Yeom, Sang-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.194-197
    • /
    • 2007
  • This paper proposes a linearization technique for the 3 level NPC type inverter, which increases the linear control range of inverter up to the 6-step inverter. The overmodulation range is divided into two modes depending on the modulation index(MI), In mode I, the reference angles are derived from the Fourier series expansion of the reference voltage corresponds to the MI. In mode II, the holding angles are also derived in the same way. Therefore, it is possible to obtain the linear control and the maximized utilization of PWM inverter output voltage.

  • PDF