• Title/Summary/Keyword: NF-κB P50

Search Result 60, Processing Time 0.028 seconds

Polysaccharide isolated from fermented barley extract activates macrophages via the MAPK and NF-κB pathways (보리발효추출물로부터 분리한 다당의 대식세포 활성화 및 신호 전달)

  • Kim, Han Wool;Jee, Hee Sook;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.555-563
    • /
    • 2018
  • Barley has nutritional benefits due to its high dietary fiber content; therefore, the intake of whole barley grains is recommended. However, barley is often consumed in the fermented form because of the improved texture and digestibility. The present study was designed to elucidate the intracellular signaling pathway for macrophage activation by the polysaccharide BF-CP from fermented barley. BF-CP is a neutral polysaccharide, composed of neutral sugars, including glucose (70.7%), xylose (11.4%), and arabinose (9.0%). BF-CP exhibited macrophage-stimulatory activity by inducing the production of interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, and nitric oxide in RAW 264.7 macrophages. Further, BF-CP treatment strongly increased the IL-6 and $TNF-{\alpha}$ gene expression in a concentration-dependent manner. Signal transduction experiments using immunoblotting showed that BF-CP phosphorylated mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38, and nuclear factor $(NF)-{\kappa}B$, in RAW 264.7 cells in a concentration-dependent manner. These results suggest that BF-CP activates the macrophages via MAPK and $NF-{\kappa}B$ pathways, and also induces an increase in the production of cytokines.

Anti-inflammatory Activities of Antimicrobial Peptide Locustacin Derived from Locusta migratoria in LPS-stimulated RAW264.7 Cells (풀무치 유래 항균 펩타이드 locustacin의 항염증 활성)

  • Choi, Ra-Yeong;Lee, Joon Ha;Seo, Minchul;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.898-904
    • /
    • 2021
  • Locusta migratoria is a widespread locust species in many parts of the world and is considered an alternative source for the production of protein for value-added ingredients. We previously identified putative antimicrobial peptides derived from L. migratoria through an in silico analysis of its transcriptome. However, its anti-inflammatory effect has not been studied. In this study, we investigated the anti-inflammatory activities of the antimicrobial peptide locustacin (KTHILSFFPSFLPLFLKK-NH2) derived from L. migratoria on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Locustacin (50, 100, and 200 ㎍/ml) significantly reduced the production of nitric oxide (NO) in LPS-stimulated macrophages without any cytotoxicity. Locustacin also inhibited the mRNA and protein expression of pro-inflammatory mediators, such as inducible NO synthase and cyclooxygenase-2, in contrast to the presence of LPS alone. Locustacin decreased the release of LPS-induced pro-inflammatory cytokines, including interleukin (IL)-6 and IL-1β, and their gene expression in a dose-dependent manner. Furthermore, locustacin (100 and/or 200 ㎍/ml) inhibited phosphorylation levels of extracellular signal regulated kinase, p38, and c-Jun N-terminal kinase. Locustacin also suppressed the degradation of inhibitory kappa B alpha, which was considered to be an inhibitor of nuclear factor kappa B (NF-κB). Collectively, these results demonstrate that locustacin can exert anti-inflammatory effects through the inhibition of mitogen-activated protein kinase (MAPK) phosphorylation, activation of NF-κB, and downstream inflammatory mediators in LPS-stimulated macrophage cells.

Bee Venom Within Liposomes Synergistically Inhibit Atopic Dermatitis in Mice

  • Kim, Joan;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.39 no.1
    • /
    • pp.40-48
    • /
    • 2022
  • Background: This study was performed to determine the effects of liposome-encapsulated bee venom (BV) treatment of inflammatory factors in atopic dermatitis (AD) compared with BV treatment. Methods: AD was induced by phthalic anhydride in mice and the effects of BV liposomes were measured. Using Leica Application Suite, thickened epidermis and dermis were measured after BV liposome treatment (0.05 and 0.1 ㎍/mL). The number of stained mast cells and the concentration of immunoglobulin (Ig)E were measured. Serum IgE concentration was analyzed using an enzyme-linked immunosorbent assay. The serum concentrations of interleukin (IL)-1, IL-4, and IL-6 inflammatory cytokines were measured. The levels of messenger ribonucleic acid expression of proinflammatory cytokines and chemokines were measured using reverse transcription polymerase chain reaction. Inhibition of mitogen-activated protein kinase activation, was analyzed on western blot. To measure the transcriptional activity (NF-κB inhibition by BV liposomes), western blots (p65, p-IκB, p50, and IκB) were also performed. Results: The weight of lymph nodes, serum IgE concentrations, morphological changes in the skins from the backs of the mice, and mast cell numbers in inflamed tissues were noticeably lower in the BV liposome treatment group compared with the BV treatment group. The concentrations of pro-inflammatory cytokines (IL-1, IL-4, IL-6) and chemokines (TSLP, CCL22) were also reduced. Activation of mitogen-activated protein kinase (p-ERK and p-p38), and transcriptional activity (p65, p-IκB, p50, and IκB) was strongly suppressed in the BV liposome group. Conclusion: BV liposomes may have a better therapeutic effect than BV for the treatment of AD.

Antioxidant and Anti-inflammatory Effects of Plantago asiatica L. Extract (질경이 추출물의 항산화 및 항염증 활성)

  • Choi, Yukyung;Choo, Byung-Kil
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.1
    • /
    • pp.91-105
    • /
    • 2024
  • Plantago asiatica L. (P. asiatica) is a perennial plant belonging to the plantaginaceae and is useful in treating a various diseases such as wounds, bronchitis, and chronic constipation. The bioactive effects of P. asiatica extract was evaluated to determine its potential for use as a variety materials in the food, pharmaceutical, and agricultural industries. Polyphenol and flavonoid contents, free radical scavenging, reducing power activity, and reactive oxygen species (ROS) expression were measured to identify the antioxidative activity. Anti-inflammatory effects were evaluated via analysis of nitric oxide (NO) and pro-inflammatory protein expression in LPS-induced RAW 264.7 cell. As a result of measuring the antioxidant activities of the P. asiatica extract, the total polyphenol content was 50.91±0.78 mg gallic acid equivalents/g and the flavonoid content was 100.99±0.44 mg rutin equivalents/g, and both DPPH and ABTS radical scavenging activities and reducing power increased depending on the concentration. Also, intracellular ROS production was inhibited by the P. asiatica extract. No cytotoxicity was observed when P. asiatica extract was treated, and NO and inflammatory protein expression were inhibited, and nuclear factor kappa B (NF-κB) phosphorylation was also inhibited in a concentration-dependent manner. In conclusion, P. asiatica is a functional natural resources of antioxidant and anti-inflammatory agents that can be used in various industries, including food and agriculture.

Quercetin Derivatives from Siegesbeckia glabrescens Inhibit the Expression of COX-2 Through the Suppression of NF-κB Activation in Microglia

  • Lim, Hyo-Jin;Li, Hua;Kim, Jae-Yeon;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • The activation of microglia induces the overproduction of inflammatory mediators that are responsible for the neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. The large amounts of prostaglandin $E_2$ ($PGE_2$) produced by inducible cyclooxygenase (COX-2) is one of the main inflammatory mediators that can contribute to neurodegeneration. The inhibition of COX-2 thus may provide therapeutic strategy for the treatment of neurodegenerative diseases. From the activity-guided purification of EtOAc soluble fraction of Siegesbeckia glabrescens, four compounds were isolated as inhibitors of $PGE_2$ production in LPS-activated microglia. Their structures were determined as 3, 4'-dimethylquercetin (1), 3, 7-dimethylquercetin (2), 3-methylquercetin (3) and 3, 7, 4'-trimethylquercetin (4) by the mass and NMR spectral data analysis. The compounds 1-4 showed dose-dependent inhibition of $PGE_2$ production in LPS-activated microglia with their $IC_{50}$ values of 7.1, 4.9, 4.4, $12.4\;{\mu}M$ respectively. They reduced the expression of protein and mRNA of COX-2 through the inhibition of I-${\kappa}B{\alpha}$ degradation and NF-$\kappa}B$ activity that were correlated with the inactivation of p38 and ERK. Therefore the active compounds from Siegesbeckia glabrescens may have therapeutic effects on neuro-inflammatory diseases through the inhibition of overproduction of $PGE_2$ and suppression of COX-2 overexpression.

Bioconversion of Gentiana scabra Bunge increases the anti-inflammatory effect in RAW 264.7 cells via MAP kinases and NF-κB pathway

  • Kim, Min-A;Lee, Han-Saem;Chon, So-Hyun;Park, Jeong-Eun;Lim, Yu-Mi;Kim, Eun-Jeong;Son, Eun-Kyung;Kim, Sang-Jun;So, Jai-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.39-50
    • /
    • 2019
  • Mitogen-activated protein (MAP) kinases play an important role in cell growth and differentiation, as well as the modulation of proinflammatory cytokines. The objective of this study was to examine the increase in the anti-inflammatory effect of Gentiana scabra Bunge (GSB), due to bioconversion with the Aspergillus kawachii crude enzyme, via inhibition of the $NF-{\kappa}B$ signaling and MAP kinase pathways in RAW 264.7 cells. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 in RAW 264.7 cells treated with the GSB ethyl acetate fraction bioconverted with A. kawachii crude enzyme (GE-BA), was dramatically suppressed as compared to GSB ethyl acetate fraction non-bioconverted with the A. kawachii crude enzyme (GE-UA). The phosphorylation of p38, extracellular signal-regulated kinases, and inhibitory ${\kappa}B$ in RAW 264.7 cells treated with GE-BA was further suppressed, as compared to exposure to GE-UA. Moreover, the mRNA expression of interleukin 6, interleukin 1-beta, and tumor necrosis $factor-{\alpha}$ was further suppressed by GE-BA, compared to GE-UA. Similarly, anti-oxidant activities, such as 2,2-diphenyl-1-picrylhydrazyl hydrate and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity, of GE-BA were further increased compared to GE-UA. These observations demonstrate that the anti-oxidant and anti-inflammatory activities of GSB ethyl acetate fraction increases as a result from bioconversion with the A. kawachii crude enzyme.

Anti-Inflammatory Effect of Hexane Fraction from Eisenia bicyclis on Lipopolysaccharides-Treated RAW 264.7 Cells (LPS로 유도된 RAW 264.7 대식세포에 대한 대황(Eisenia bicyclis) 헥산 분획물의 항염증 효과)

  • Kim, Bowoon;Choi, Chang-Geun;Kim, Jae-Il;Kim, Hyeung-Rak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.2
    • /
    • pp.152-161
    • /
    • 2021
  • Eisenia bicyclis is known to have secondary metabolites exhibiting various biological activities. In a preliminary study, the n-hexane fraction obtained from the ethanolic extract of E. bicyclis showed higher anti-inflammatory activity than the ethyl acetate and butyl alcohol fractions based on the inhibition of lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW 264.7 cells. Using this fraction (E. bicyclis hexane fraction, EHF), we investigated the molecular mechanisms underlying its anti-inflammatory effect in LPS-stimulated RAW 264.7 cells. Pretreatment of the cells with up to 50 ㎍/mL EHF significantly inhibited NO and prostaglandin E2 production as well as their responsible enzyme proteins and mRNAs, in a dose-dependent manner (P<0.05). Similarly, EHF markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α as well as their mRNA levels. Nuclear translocation of nuclear factor-kappa B (NF-κB) was strongly suppressed by EHF treatment. EHF significantly reduced the phosphorylation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase/Akt in LPS-stimulated cells. Moreover, EHF reduced ear edema in phorbol myristate acetate (PMA)-induced mice. These results indicate that EHF contains potent anti-inflammatory compounds, which may be used as a dietary supplement for the prevention of inflammatory diseases.

Wiryeongtang attenuates diabetic renal dysfunction in human renal mesangial cells (위령탕(胃苓湯) 추출물의 사람 유래 신장 메산지움 세포에서의 당뇨병성 신장 손상 개선 효과)

  • Yoon, Jung Joo;Han, Byung Hyuk;Choi, Eun Sik;NamGung, Seung;Jeong, Da Hye;Kim, Hye Yoom;Ahn, You Mee;Lee, Yun Jung;Kang, Dae Gill;Lee, Ho Sub
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.71-78
    • /
    • 2016
  • Objectives : Diabetic nephropathy is one of the most common chronic complications of diabetes and a leading cause of end-stage renal failure in the world. Mesangial cell proliferation is known as the major pathologic features such as glomerulosclerosis and renal fibrosis. Wiryeongtang (WRT) is a well-known traditional herbal formula as therapeutic agents for chronic edema and dysuresia of renal homeostasis. In the present study, we investigated whether WRT inhibits high glucose (HG)-induced renal dysfunction by TGF-β/Smads signal regulation in cultured mesangial cells.Methods : Inhibitory effect of WRT (10-50 ㎍/ml) on HG-stimulated mesangial cells proliferation and dysfunction were evaluated by [3H]-thymidine incorporation, Western blot, and RT-qPCR.Results : WRT significantly decreased HG-accelerated thymidine incorporation in human renal mesangial cell in a dose-dependent levels. WRT induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21waf1/cip1 and p27kip1 expression. In addition, HG enhanced expression of dysfunction biomarker such as collagen IV and CTGF, which was markedly attenuated by WRT. WRT decreased TGF-β1 and Smad-2/Smad-4 expression, whereas increased Smad-7 expression under HG. Furthermore, WRT inhibited HG-induced inflammatory factors level such as ICAM-1 and MCP-1 as well as NF-κB p65 nuclear translocation and intracellular ROS production.Conclusions : These results suggested that WRT may alleviate mesangial proliferation and inflammation possibly involved in renal fibrotic process, further diabetic nephropathy through disturbing TGF-β1/Smad signaling and NF-κB/ROS pathway. Thus, WRT might prove to be effective in the treatment of renal dysfunction leading to diabetic nephropathy.

Anti-Inflammatory Effects of Abalone (Haliotis discus hannai) Viscera via Inhibition of ROS Production in LPS-Stimulated RAW 264.7 Cells

  • Shin, Tai-Sun;Choi, Kap Seong;Chun, Jiyeon;Kho, Kang-Hee;Son, Seon Ah;Shim, Sun-Yup
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2022
  • Haliotis discus hannai called abalone, is the valuable marine mollusks and the by-products of abalone processing are viscera. Brownish abalone male viscera (AMV), which have not been reported as having anti-inflammatory effects, was extracted with acetone and fractionated by different six acetone/hexane ratios (0, 10, 20, 30, 40, and 100%) using a silica column via in vitro ABTS and DPPH radical and nitric oxide (NO) production assay-guided fractionation. Among the fractions, the acetone/hexane ratio 40%, A40 exhibited the most potent radical scavenging activities and inhibition of lipopolysaccharide (LPS)-induced NO production without cytotoxicity. A40 inhibited LPS-induced intracellular reactive oxygen species (ROS) production in a dose-dependent manner. Western blot analysis revealed that A40 down-regulated the activation of NF-κB, MAPK (ERK 1/2, p-38, and JNK), and inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. Moreover, this fraction inhibited the generation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. These results suggested that AMV containing A40 with anti-inflammatory and anti-oxidantive effects, is the effective therapeutic and functional material for treating inflammatory disorders.

The Modulatory Effect of Sodium Propionate Treatment in the Expression of Inflammatory Cytokines and Intracellular Growth of Brucella abortus 544 in Raw 264.7 Cells

  • Heejin Kim;Tran Xuan Ngoc Huy;Trang Thi Nguyen;Alisha Wehdnesday Bernardo Reyes;WonGi Min;Hu Jang Lee;Jin Hur;Suk Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1006-1012
    • /
    • 2023
  • In this study, we investigated the effects of sodium propionate (SP) treatment on intracellular mechanism of murine macrophages and its contribution to host immunity during Brucella abortus 544 infection. The intracellular growth assay revealed that SP inhibited Brucella replication inside the macrophages. To determine intracellular signaling involved during SP treatment after Brucella infection, we analyzed the change of five different cytokines production relevant to SP such as TNF-α, IL-10, IFN-γ, IL-1β, and IL-6, and the results indicated that the boost with IL-10 was apparent throughout the culture period for 48 h as well as IL-1β which was apparent at 24 h post-infection and IFN-γ which was apparent at 24 h and 48 h in comparison to SP untreated groups. On the other way, SP-treated cells displayed suppressed production of TNF-α and IL-6 at all time points tested and 48 h post-infection, respectively. Furthermore, we conducted western blot to establish a cellular mechanism, and the result suggested that SP treatment attenuated p50 phosphorylation, part of the NF-κB pathway. These findings indicated that the inhibitory effect of SP against Brucella infection could be attributed through induction of cytokine production and interference on intracellular pathway, suggesting SP as a potential candidate for treating brucellosis.