Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.10.898

Anti-inflammatory Activities of Antimicrobial Peptide Locustacin Derived from Locusta migratoria in LPS-stimulated RAW264.7 Cells  

Choi, Ra-Yeong (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Joon Ha (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Seo, Minchul (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, In-Woo (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Hwang, Jae-Sam (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Mi-Ae (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Journal of Life Science / v.31, no.10, 2021 , pp. 898-904 More about this Journal
Abstract
Locusta migratoria is a widespread locust species in many parts of the world and is considered an alternative source for the production of protein for value-added ingredients. We previously identified putative antimicrobial peptides derived from L. migratoria through an in silico analysis of its transcriptome. However, its anti-inflammatory effect has not been studied. In this study, we investigated the anti-inflammatory activities of the antimicrobial peptide locustacin (KTHILSFFPSFLPLFLKK-NH2) derived from L. migratoria on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Locustacin (50, 100, and 200 ㎍/ml) significantly reduced the production of nitric oxide (NO) in LPS-stimulated macrophages without any cytotoxicity. Locustacin also inhibited the mRNA and protein expression of pro-inflammatory mediators, such as inducible NO synthase and cyclooxygenase-2, in contrast to the presence of LPS alone. Locustacin decreased the release of LPS-induced pro-inflammatory cytokines, including interleukin (IL)-6 and IL-1β, and their gene expression in a dose-dependent manner. Furthermore, locustacin (100 and/or 200 ㎍/ml) inhibited phosphorylation levels of extracellular signal regulated kinase, p38, and c-Jun N-terminal kinase. Locustacin also suppressed the degradation of inhibitory kappa B alpha, which was considered to be an inhibitor of nuclear factor kappa B (NF-κB). Collectively, these results demonstrate that locustacin can exert anti-inflammatory effects through the inhibition of mitogen-activated protein kinase (MAPK) phosphorylation, activation of NF-κB, and downstream inflammatory mediators in LPS-stimulated macrophage cells.
Keywords
Antimicrobial peptide; Locusta migratoria; mitogen-activated protein kinases (MAPKs); nuclear factor kappa B (NF-${\kappa}B$); RAW264.7 cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, J. H., Chung, H., Shin, Y. P., Kim, I. W., Natarajan, S., Veerappan, K., Seo, M., Park, J. and Hwang, J. S. 2021. In silico strategic curation, retrieval and prediction of novel antimicrobial peptide from Locusta migratoria transcriptome. J. Asia Pac. Entomol. 24, 237-242.   DOI
2 Gao, R., Shu, W., Shen, Y., Sun, Q., Jin, W., Li, D., Li, Y. and Yuan, L. 2021. Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via MAPK and NF-ΚB pathways. Food Sci. Hum. Wellness 10, 103-111.   DOI
3 Kim, M. K. and Kim, D. Y. 2015. Anti-inflammatory effect of barley leaf ethanol extract in LPS-stimulated RAW264.7 macrophage. Kor. J. Food Preserv. 22, 735-743.   DOI
4 Kim, S. J., Kim, T. J., Kim, E. H. and Kim, Y. M. 2020. Anti-inflammatory and anti-oxidant studies of Osung-tang extracts in LPS-induced RAW264.7 cells. J. Kor. Med. Ophthalmol. Otolaryngol. Dermatol. 33, 1-11.
5 Kwak, K. W., Kim, S. Y., An, K. S., Kim, Y. S., Park, K., Kim, E., Hwang, J. S., Kim, M. A., Ryu, H. Y. and Yoon, H. J. 2020. Subacute oral toxicity evaluation of freeze-dried powder of Locusta migratoria. Food Sci. Anim. Resour. 40, 795.   DOI
6 Park, Y. R., Park, C. I. and Soh, Y. 2020. Antioxidant and anti-inflammatory effects of NCW peptide from clam worm (Marphysa sanguinea). J. Microbiol. Biotechnol. 30, 1387-1394.   DOI
7 Lee, H. J., Seo, M., Lee, J. H., Kim, I. W., Kim, S. Y., Hwang, J. S. and Kim, M. A. 2018. Anti-neuroinflammatory effects of a Locusta migratoria ethanol extract in LPS-stimulated BV-2 microglia. J. Life Sci. 28, 1332-1338.   DOI
8 Lee, J. H., Seo, M., Lee, H. J., Baek, M., Kim, I. W., Kim, S. Y., Kim, M. A., Kim, S. H. and Hwang, J. S. 2019. Anti-inflammatory activity of antimicrobial peptide allomyrinasin derived from the dynastid beetle, Allomyrina dichotoma. J. Microbiol. Biotechnol. 29, 687-695.   DOI
9 Majdalawieh, A. and Ro, H. S. 2010. Regulation of IκBα function and NF-κB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm. 2010, 823821.   DOI
10 Shim, D. W., Heo, K. H., Kim, Y. K., Sim, E. J., Kang, T. B., Choi, J. W., Sim, D. W., Cheong, S. H., Lee, S. H., Bang, J. K., Won, H. S. and Lee, K. H. 2015. Anti-inflammatory action of an antimicrobial model peptide that suppresses the TRIF-dependent signaling pathway via inhibition of toll-like receptor 4 endocytosis in lipopolysaccharide-stimulated macrophages. PLoS One 10, e0126871.   DOI
11 Ibrahim, Z. A., Armour, C. L., Phipps, S. and Sukkar, M. B. 2013. RAGE and TLRs: relatives, friends or neighbours? Mol. Immunol. 56, 739-744.   DOI
12 Martinez, F. O., Helming, L. and Gordon, S. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451-483.   DOI
13 Shin, J. S., Kim, J. M. and An, W. G. 2012. Anti-inflammatory effect of red ginseng through regulation of MAPK in lipopolysaccharide-stimulated RAW264.7. Kor. J. Orient. Physiol. Pathol. 26, 293-300.
14 Woo, H. S., Lee, S. M., Heo, J. D., Lee, M. S., Kim, Y. S. and Kim, D. W. 2018. Anti-inflammatory activity of extracts of Hovenia dulcis on lipopolysaccharides-stimulated RAW 264.7 cells. Kor. J. Plant Res. 31, 466-477.   DOI
15 Baek, M., Seo, M., Lee, J. H., Kim, I. W., Kim, M. A. and Hwang, J. S. 2018. Osteoblastogenic activity of Locusta migratoria ethanol extracts on pre-osteoblastic MG-63 cells. J. Life Sci. 28, 1448-1454.   DOI
16 Cao, H., Luo, Q., Wang, H., Liu, Z., Li, G. and Liu, J. 2019. Structural characterization of peptides from Locusta migratoria manilensis (Meyen, 1835) and anti-aging effect in Caenorhabditis elegans. RSC Advances 9, 9289-9300.   DOI
17 Capece, D., Verzella, D., Di Francesco, B., Alesse, E., Franzoso, G. and Zazzeroni, F. 2020. NF-κB and mitochondria cross paths in cancer: mitochondrial metabolism and beyond. Semin. Cell Dev. Biol. 98, 118-128.   DOI
18 Gao, R., Shu, W., Shen, Y., Sun, Q., Bai, F., Wang, J., Li, D., Li, Y., Jin, W. and Yuan, L. 2020. Sturgeon protein-derived peptides exert anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via the MAPK pathway. J. Funct. Foods 72, 104044.   DOI
19 Ji, J. D., Lee, Y. H. and Song, G. G. 2004. Prostaglandin E2 (PGE2): Roles in immune responses and inflammation. J. Kor. Rheum. Assoc. 11, 307-316.
20 Turini, M. E. and DuBois, R. N. 2002. Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med. 53, 35-57.   DOI
21 Kim, B. H., Lee, Y. T. and Kang, K. H. 2010. Codonopsis Lanceolata inhibits inflammation through regulation of MAPK in LPS-stimulated RAW264.7 cells. Kor. J. Orient. Physiol. Pathol. 24, 80-84.
22 Yang, E. J., Hyun, K. H., Choi, H. R., Kim, S. Y. and Hyun, C. G. 2018. Anti-inflammatory activity of Rumex acetosella extracts from Jeju Island. KSBB. J. 33, 155-160.   DOI
23 Yim, C. Y. 2010. Nitric oxide and cancer. Kor. J. Med. 78, 430-436.
24 Baek, M., Seo, M., Lee, J. H., Lee, H. J., Kim, I. W., Kim, S. Y., Kim, M. A., Kim, S. Y. and Hwang, J. S. 2019. Inhibitory effects of Locusta migratoria ethanol extracts on RANKL-induced osteoclast differentiation. J. Life Sci. 29, 1104-1110.   DOI
25 Ferrero Miliani, L., Nielsen, O. H., Andersen, P. S. and Girardin, S. E. 2007. Chronic inflammation: importance of NOD2 and NALP3 in interleukin 1β generation. Clin. Exp. Immunol. 147, 227-235.   DOI
26 Guha, M. and Mackman, N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 13, 85-94.   DOI
27 Namkoong, S., Jang, S. A., Sohn, E. H., Bak, J. P., Sohn, E., Koo, H. J., Yoon, W. J., Kwon, J. E., Jeong, Y. J., Meng, X., Han, H. S. and Kang, S. C. 2015. Comparative study of Litsea japonica leaf and fruit extract on the anti-inflammatory effects. Kor. J. Plant Res. 28, 145-152.   DOI
28 Park, J. H. and Lee, S. R. 2018. Anti-inflammatory activities of Scolopendra subspinipes mutilans in RAW264.7 cells. J. Nutr. Health 51, 323-329.   DOI
29 Oh, S., Park, H. S., Kim, E. H. and Kim, Y. M. 2019. Anti-oxidative and anti-inflammatory effects of Danpitang in RAW 264.7 cell. J. Kor. Med. Ophthalmol. Otolaryngol. Dermatol. 32, 37-47.   DOI