DOI QR코드

DOI QR Code

Antioxidant and Anti-inflammatory Effects of Plantago asiatica L. Extract

질경이 추출물의 항산화 및 항염증 활성

  • 최유경 (전북대학교 작물생명과학과) ;
  • 추병길 (숙명여자대학교 약학대학 약학연구소)
  • Received : 2023.11.10
  • Accepted : 2023.12.19
  • Published : 2024.02.29

Abstract

Plantago asiatica L. (P. asiatica) is a perennial plant belonging to the plantaginaceae and is useful in treating a various diseases such as wounds, bronchitis, and chronic constipation. The bioactive effects of P. asiatica extract was evaluated to determine its potential for use as a variety materials in the food, pharmaceutical, and agricultural industries. Polyphenol and flavonoid contents, free radical scavenging, reducing power activity, and reactive oxygen species (ROS) expression were measured to identify the antioxidative activity. Anti-inflammatory effects were evaluated via analysis of nitric oxide (NO) and pro-inflammatory protein expression in LPS-induced RAW 264.7 cell. As a result of measuring the antioxidant activities of the P. asiatica extract, the total polyphenol content was 50.91±0.78 mg gallic acid equivalents/g and the flavonoid content was 100.99±0.44 mg rutin equivalents/g, and both DPPH and ABTS radical scavenging activities and reducing power increased depending on the concentration. Also, intracellular ROS production was inhibited by the P. asiatica extract. No cytotoxicity was observed when P. asiatica extract was treated, and NO and inflammatory protein expression were inhibited, and nuclear factor kappa B (NF-κB) phosphorylation was also inhibited in a concentration-dependent manner. In conclusion, P. asiatica is a functional natural resources of antioxidant and anti-inflammatory agents that can be used in various industries, including food and agriculture.

본 연구에서는 페놀 화합물, 라디칼 소거능, 환원능력 분석 및 세포 내 ROS 측정을 통해 질경이 추출물의 항산화 능력을 확인하였다. 질경이 추출물의 총 폴리페놀 및 플라보노이드함량은 각각 50.91±0.78 mg GAE/g, 100.99±0.44 mg rutin/g으로 나타났으며, DPPH 및 ABTS radical 소거능과 환원력 모두 농도 의존적으로 증가하였다. 또한, 세포 내 ROS는 질경이 추출물에 의해 생성이 억제됨을 확인하였다. 항염증 활성은 RAW 264.7 세포를 이용하여 염증을 유도한 뒤 NO 측정과 western blot 분석을 통해 염증성 단백질 발현량을 확인하였다. 질경이 추출물은 LPS를 처리한 RAW 264.7 세포에서 NF-ĸB의 신호 전달 경로를 억제하여 염증성 단백질인 iNOS 및 COX-2의 발현량을 조절하였으며, 이로 인해 NO의 생성량을 억제하였다. 본 실험 결과를 통해 질경이 추출물의 항산화 및 항염증에 대한 우수한 활성을 확인하였으며, 식의약품 분야를 비롯한 농산업 분야에서 다양한 기능성 천연 소재로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Appel, H. M., H. L. Govenor, M. D'ascenzo, E. Siska, and J. C. Schultz. 2001. Limitations of Folin assays of foliar phenolics in ecological studies. Journal of chemical ecology. 27(4): 761-778. https://doi.org/10.1023/A:1010306103643
  2. Bubonja-Sonje, M., J. Giacometti, and M. Abram. 2011. Antioxidant and antilisterial activity of olive oil, cocoa and rosemary extract polyphenols. Food Chemistry. 127(4): 1821-1827. https://doi.org/10.1016/j.foodchem.2011.02.071
  3. Chathuranga, K., M. S. Kim, H.-C. Lee, T.-H. Kim, J.-H. Kim, W. Gayan Chathuranga, P. Ekanayaka, H. Wijerathne, W.-K. Cho, and H. I. Kim. 2019. Anti-respiratory syncytial virus activity of Plantago asiatica and Clerodendrum trichotomum extracts in vitro and in vivo. Viruses. 11(7): 604.
  4. Choi, Y. N., Y. K. Choi, L. Nan, and B. K. Choo. 2020. Anti-oxidant and Anti-inflammatory Effects of Ethanol Extracts from Leonurus japonicus Houtt. on LPS-induced RAW 264.7 Cells. Korean J. Organic Agric. 28(4): 659-677.
  5. Chuang, W. Y., L. J. Lin, H. D. Shin, Y. M. Shy, S. C. Chang, and T. T. Lee. 2021. The Potential Utilization of High-Fiber Agricultural By-Products as Monogastric Animal Feed and Feed Additives: A Review. Animals. 11(7): 2098.
  6. Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry. 37(4): 277-285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
  7. Fang, Y., L. Yang, and J. He. 2021. Plantanone C attenuates LPS-stimulated inflammation by inhibiting NF-κB/iNOS/COX-2/MAPKs/Akt pathways in RAW 264.7 macrophages. Biomedicine & Pharmacotherapy. 143: 112104.
  8. Habtemariam, S. 2007. Antioxidant activity of Knipholone anthrone. Food chemistry. 102(4): 1042-1047. https://doi.org/10.1016/j.foodchem.2006.06.040
  9. Huang, B.-P., C.-H. Lin, H.-M. Chen, J.-T. Lin, Y.-F. Cheng, and S.-H. Kao. 2015. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-κB signaling in murine macrophages. DNA and cell biology. 34(2): 133-141. https://doi.org/10.1089/dna.2014.2630
  10. Huang, S.-S., C.-S. Chiu, T.-H. Lin, M.-M. Lee, C.-Y. Lee, S.-J. Chang, W.-C. Hou, G.-J. Huang, and J.-S. Deng. 2013. Antioxidant and anti-inflammatory activities of aqueous extract of Centipeda minima. Journal of Ethnopharmacology. 147(2): 395-405. https://doi.org/10.1016/j.jep.2013.03.025
  11. Jeong, C.-H., Y.-I. Bae, K.-H. Shim, J.-S. Choi. 2004. DPPH radical scavenging effect and antimicrobial activities of plantain (Plantago asiatica L.) extracts. Journal of the Korean Society of Food Science and Nutrition. 33(10): 1601-1605. https://doi.org/10.3746/JKFN.2004.33.10.1601
  12. Jung, Y. H., M. J. Ryu, Y. H. Jung, and M. J. Ryu, 2018. Anti-oxidative and anti-inflammatory effects of Codonopsis lanceolata skin extracts. Asian Journal of Beauty and Cosmetology. 16(3): 347-357. https://doi.org/10.20402/ajbc.2018.0217
  13. Kang, S . R., K. I . Park, H. S . Park, D. H . Lee, J . A. K im, A. N agappan, E . H. K im, W. S. Lee, S. C. Shin, and M. K. Park. 2011. Anti-inflammatory effect of flavonoids isolated from Korea Citrus aurantium L. on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells by blocking of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways. Food Chemistry. 129(4): 1721-1728. https://doi.org/10.1016/j.foodchem.2011.06.039
  14. Kiarie, E. G. and A. Mills. 2019. Role of Feed Processing on Gut Health and Function in Pigs and Poultry: Conundrum of Optimal Particle Size and Hydrothermal Regimens. Front Vet Sci. 19: 19.
  15. Lee, M. H., J. M. Lee, S. H. Jun, S. H. Lee, N. W. Kim, J. H. Lee, N. Y. Ko, S. H. Mun, B. K. Kim, and B. O. Lim. 2007. The anti-inflammatory effects of Pyrolae herba extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. Journal of ethnopharmacology. 112(1): 49-54. https://doi.org/10.1016/j.jep.2007.01.036
  16. Maroon, J. C., J. W. Bost, and A. Maroon. 2010. Natural anti-inflammatory agents for pain relief. Surgical neurology international 1.
  17. Mayer, B. and B. Hemmens, 1997. Biosynthesis and action of nitric oxide in mammalian cells. Trends in biochemical sciences. 22(12): 477-481. https://doi.org/10.1016/S0968-0004(97)01147-X
  18. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454(7203): 428-435. https://doi.org/10.1038/nature07201
  19. Nagajyothi, P., S. J. Cha, I. J. Yang, T. Sreekanth, K. J. Kim, and H. M. Shin. 2015. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. Journal of Photochemistry and Photobiology B: Biology. 146: 10-17. https://doi.org/10.1016/j.jphotobiol.2015.02.008
  20. Nam, H. H., L. Nan, and B. K. Choo. 2021. Inhibitory effects of Camellia japonica on cell inflammation and acute rat reflux esophagitis. Chinese Medicine. 16: 1-12. https://doi.org/10.1186/s13020-020-00418-7
  21. Nan, L., C.-H. Lee, Y.-N. Choi, and B.-K. Choo. 2019. Anti-oxidant and anti-inflammatory effects of ethanol extracts from aerial part of Coriandrum sativum L. Korean Journal of Organic Agriculture. 27(4): 513-528.
  22. Park, S.-J., E.-H. Sihn, and C.-A. Kim. 2011. Component Analysis and Antioxidant Activity of Plantago asiatica L. Korean Journal of Food Preservation. 18(2): 212-218. https://doi.org/10.11002/KJFP.2011.18.2.212
  23. Pietta, P.-G. 2000. Flavonoids as antioxidants. Journal of natural products. 63(7): 1035-1042. https://doi.org/10.1021/np9904509
  24. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine. 26(9-10): 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  25. Ryu, M. J. and S. Y. Lee. 2010. Antioxidant effects of Plantago asiatica and protective effects on Human HaCaT Keratinocyte. Journal of the Korea Soc. Beauty and Art. 11: 15-25.
  26. Sanchez, C. 2017. Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and systems biotechnology. 2(1): 13-22. https://doi.org/10.1016/j.synbio.2016.12.001
  27. Schmid-Schonbein, G. W. 2006. Analysis of inflammation. Annu. Rev. Biomed. Eng. 8: 93-151. https://doi.org/10.1146/annurev.bioeng.8.061505.095708
  28. Sirivibulkovit, K., S. Nouanthavong, and Y. Sameenoi. 2018. based DPPH assay for antioxidant activity analysis. Analytical sciences: 34(7): 795-800. https://doi.org/10.2116/analsci.18P014
  29. Sridhar, K. and A. L. Charles. 2019. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry. 275: 41-49. https://doi.org/10.1016/j.foodchem.2018.09.040
  30. Surh, Y.-J., K.-S. Chun, H.-H. Cha, S.S. Han, Y.-S. Keum, K.-K. Park, and S. S. Lee. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 480: 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  31. Umesalma, S. and G. Sudhandiran. 2010. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-κB, iNOS, COX-2, TNF-α, and IL-6 in 1, 2-dimethylhydrazine-induced rat colon carcinogenesis. Basic & clinical pharmacology & toxicology, 107(2): 650-655. https://doi.org/10.1111/j.1742-7843.2010.00565.x