• 제목/요약/키워드: Multivariate Statistical Methods

검색결과 463건 처리시간 0.017초

The Limit Distribution of an Invariant Test Statistic for Multivariate Normality

  • Kim Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • 제12권1호
    • /
    • pp.71-86
    • /
    • 2005
  • Testing for normality has always been an important part of statistical methodology. In this paper a test statistic for multivariate normality is proposed. The underlying idea is to investigate all the possible linear combinations that reduce to the standard normal distribution under the null hypothesis and compare the order statistics of them with the theoretical normal quantiles. The suggested statistic is invariant with respect to nonsingular matrix multiplication and vector addition. We show that the limit distribution of an approximation to the suggested statistic is representable as the supremum over an index set of the integral of a suitable Gaussian process.

A Cointegration Test Based on Weighted Symmetric Estimator

  • Son Bu-Il;Shin Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.797-805
    • /
    • 2005
  • Multivariate unit root tests for the VAR(p) model have been commonly used in time series analysis. Several unit root tests were developed and recently Shin(2004) suggested a cointegration test based on weighted symmetric estimator. In this paper, we suggest a multivariate unit root test statistic based on the weighted symmetric estimator. Using a small simulation study, we compare the powers of the new test statistic with the statistics suggested in Shin(2004) and Fuller(1996).

Estimating Parameters in Muitivariate Normal Mixtures

  • Ahn, Sung-Mahn;Baik, Sung-Wook
    • Communications for Statistical Applications and Methods
    • /
    • 제18권3호
    • /
    • pp.357-365
    • /
    • 2011
  • This paper investigates a penalized likelihood method for estimating the parameter of normal mixtures in multivariate settings with full covariance matrices. The proposed model estimates the number of components through the addition of a penalty term to the usual likelihood function and the construction of a penalized likelihood function. We prove the consistency of the estimator and present the simulation results on the multi-dimensional nor-mal mixtures up to the 8-dimension.

EWMA Control Charts to Monitor Correlation Coefficients

  • Chang, Duk-Joon;Cho, Gyo-Young;Lee, Jae-Man
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.413-422
    • /
    • 1999
  • Multivariate EWMA control charts to simultaneously monitor correlation coefficients of correlated quality characteristics under multivariate normal process are proposed. Performances of the proposed charts are measured in terms of average run length(ARL). Numerical results show that smalle values for smoothing constant with accumulate-combine approach are preferred for detecting smalle shifts.

  • PDF

A Comparative Study on Bayes Estimators for the Multivariate Normal Mcan

  • Kim, Dal-Ho;Lee, In suk;Kim, Hyun-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.501-510
    • /
    • 1999
  • In this paper, we consider a comparable study on three Bayes procedures for the multivariate normal mean estimation problem. In specific we consider hierarchical Bayes empirical Bayes and robust Bayes estimators for the normal means. Then three procedures are compared in terms of the four comparison criteria(i.e. Average Relative Bias (ARB) Average Squared Relative Bias (ASRB) Average Absolute Bias(AAB) Average Squared Deviation (ASD) using the real data set.

  • PDF

On Testing Equality of Matrix Intraclass Covariance Matrices of $K$Multivariate Normal Populations

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.55-64
    • /
    • 2000
  • We propose a criterion for testing homogeneity of matrix intraclass covariance matrices of K multivariate normal populations, It is based on a variable transformation intended to propose and develop a likelihood ratio criterion that makes use of properties of eigen structures of the matrix intraclass covariance matrices. The criterion then leads to a simple test that uses an asymptotic distribution obtained from Box's (1949) theorem for the general asymptotic expansion of random variables.

  • PDF

MINITAB Macros for Testing the Difference of Mean Vectors of Two Multivariate Populations

  • Hyuk Joo;Min Ah
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.179-198
    • /
    • 2000
  • We consider the problem of comparing the mean vectors of two multivaiate populations, We focus on testing hypotheses concerning two multivariate mean vectors by use of MINITAB, For the cases of small sample and large sample MINITAB programs and outputs are presented for solving staistical problems. The MiniTAB programs made in this paper are saved as macro files and thus can be conveniently used for solving another problems.

  • PDF

Nonparametric Test for Multivariate Location Translation Alternatives

  • Na, Jong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.799-809
    • /
    • 2000
  • In this paper we propose a nonparametric one sided test for location parameters in p-variate(p$\geq$2) location translation model. The exact null distributions of test statistics are calculated by permutation principle in the case of relatively small sample sizes and the asymptotic distributions are also considered. The powers of various tests are compared through computer simulation and thep-values with real data are also suggested through example.

  • PDF

ROC Curve for Multivariate Random Variables

  • Hong, Chong Sun
    • Communications for Statistical Applications and Methods
    • /
    • 제20권3호
    • /
    • pp.169-174
    • /
    • 2013
  • The ROC curve is drawn with two conditional cumulative distribution functions (or survival functions) of the univariate random variable. In this work, we consider joint cumulative distribution functions of k random variables, and suggest a ROC curve for multivariate random variables. With regard to the values on the line, which passes through two mean vectors of dichotomous states, a joint cumulative distribution function can be regarded as a function of the univariate variable. After this function is modified to satisfy the properties of the cumulative distribution function, a ROC curve might be derived; moreover, some illustrative examples are demonstrated.

Likelihood Ratio Criterion for Testing Sphericity from a Multivariate Normal Sample with 2-step Monotone Missing Data Pattern

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.473-481
    • /
    • 2005
  • The testing problem for sphericity structure of the covariance matrix in a multivariate normal distribution is introduced when there is a sample with 2-step monotone missing data pattern. The maximum likelihood method is described to estimate the parameters on the basis of the sample. Using these estimates, the likelihood ratio criterion for testing sphericity is derived.