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Abstract
This paper investigates a penalized likelihood method for estimating the parameter of normal mixtures in mul-

tivariate settings with full covariance matrices. The proposed model estimates the number of components through
the addition of a penalty term to the usual likelihood function and the construction of a penalized likelihood func-
tion. We prove the consistency of the estimator and present the simulation results on the multi-dimensional
nor-mal mixtures up to the 8-dimension.
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1. Introduction

Multivariate normal mixture provides a well-defined model for high-dimensional data. In recent years,
many researchers applied the model to various disciplines such as cluster analysis (Raftery and Dean,
1998), classification (Alexandridis et al., 2004), and other areas.

However, several issues associated with the model have been pointed out and discussed over the
past decades. First of all, testing for the number of components in a mixture is a difficult problem.
Roeder and Wasserman (1997) used BIC, although Solka et al. (1995) used AIC to find the correct
number of components. Another issue is the identifiability problem that states that the true distribution
is represented by more than one parameter. Redner (1981) handled this problem by using the quotient
topological space where equivalent solutions are mapped into a single point. In addition, another
problem is related to estimating its parameters.

The maximum likelihood framework is among the most commonly used approaches. But the
likelihood function is not bounded above and this usually happens on the boundary points of the
parameter space. In order to avoid the problem, authors place constraints on the parameter space.
Hathaway (1985), for example, proposed a constrained maximization of the likelihood function by
putting a restriction on the variances. However, a more general approach is to use penalized maximum
likelihood estimation(PMLE), where new likelihood function is formulated by adding a penalty term.
Several authors including Ciuperca et al. (2003), Ingrassia (2004), and Chen and Tan (2009) used
this approach and what they used as a constraint was mostly on variances or variance matrices in
multivariate cases.

In this paper, we investigate a penalized likelihood method for estimating the parameters of normal
mixtures in a multivariate setting. The proposed model estimates the number of components while
avoiding the infinite likelihood problem. In order to estimate the number of components, we impose
one assumption that the initial solution of the EM algorithm is overfitted in terms of the number of
components.
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The paper is organized as follows. In Section 2, the proposed model is explained with some
assumptions. Section 3 presents theorems on the consistency of the proposed model and parameter
estimation algorithm along with simulation results follow in Section 4.

2. Penalized Likelihood

Let x1, x2, . . . , xn be d-dimensional i.i.d. random variables. We assume that the distribution of x1 is
known except for some parameter, γ. The set of all parameter points Γ is called the parameter space
and γ0 will denote the true parameter. It is also assumed that there is a σ -finite measure µ such that
for each γεΓ the probability measure µγ is absolutely continuous with respect to µ. We let g(x; γ)
denote the density of µγ with respect to µ. In case of normal mixtures γ can be represented as

γ =
(
π1, . . . , πg, µ1, . . . , µg, Σ1, . . . ,Σg

)T
,

where π′js are mixing proportion such that
∑g

j=1 π j = 1, µ′js are component means, and Σ′js are com-
ponent covariance matrices. Normal mixture is defined as follows.

g(x; γ) =

g∑
j=1

π jϕ
(
x; µ j,Σ j

)
,

where ϕ j(x; µ j,Σ j) = (2π)−d/2|Σ j|
−1/2 exp{−1/2(x − µ j)T Σ−1(x − µ j)}.

The most commonly used method to estimate the parameters is the maximum likelihood frame-
work, where the likelihood function is given by

gn(x; γ) =

n∏
i=1

g(xi; γ).

The main idea of our approach to estimating γ is such that we have an excessive number of
components to start with and try to eliminate spurious components during the process of parameter
estimation. We consider a penalized likelihood function defined as

fn(x; γ) = gn(x; γ)pn(γ). (2.1)

The penalized likelihood such as (2.1) was formulated, for example, in Ciuperca et al. (2003) and
Chen and Tan (2009). Chen and Tan (2009) especially used a penalty that depends on the covariance
matrices and the sample size. However, instead of covariance we chose the penalty to be a function
of the mixing proportion and propose the following penalty function.

pn(γ) =

 g∏
j=1

π(α−1)
j

λn

, (2.2)

where α is a positive number smaller than 1 and λ is a small positive number for controlling the overall
effect of the penalization on the likelihood. By maximizing the penalty function, we encourage some
of π′js to take on values close to zero, since (2.2) reaches the minimum when all the π′js have the same
value. Since we assume that the current model is overfitted in terms of the number of components, it
would be reasonable to express the assumption as follows.

g∏
j=1

π(α−1)
j <

g∏
j=1

π(α−1)
0 j , (2.3)
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where π′0 js are the true mixing proportions.
Now we summarize some assumptions made in the proposed model.

Assumption 1. π j > ε (ε is an arbitrary small number). We can eliminate a component if the
corresponding π j is smaller than ε.

Assumption 2. The inequality (2.3) is satisfied.
All the assumptions in Redner (1981) and thus in Wald (1949) are also made here. One of them is

restated below.

Assumption 3. The parameter space Γ is a metric space with metric δ(·, ·) and has the property that
every closed and bounded subset of Γ is compact. This is from Redner (1981) and an example can be
found in Hathaway (1985). As with Wald (1949), we define functions f and f ∗ as follows.

f (x; γ, ρ) = sup
{
f1

(
x; γ′

)
: δ

(
γ, γ′

)
< ρ, γ′ ∈ Γ

}
,

where f1(x; γ) =
∑g

j=1 π jϕ j(x; µ j,Σ j)[
∏g

j=1 π
(α−1)
j ]λ and

f ∗ (x; γ, ρ) = max (1, f (x; γ, ρ)) .

3. Consistency of the Penalized Maximum Likelihood Estimator

We first give some lemmas that will be used in the main theorem.

Lemma 1.
∫

log f ∗(x; γ, ρ)duγ0 is finite.

Proof: According to the definition of f (x; θ, ρ), we have∫
log f ∗(x; γ, ρ)duγ0 =

∫
log max(1, f (x; γ, ρ))duγ0

≤

g∑
j=1

∫
log max

1, sup


g∑

j=1

π jϕ j(x; µ j,Σ j)

 g∏
j=1

π(α−1)
j

λ: δ(γ, γ′)<ρ, γ′ ∈ Γ


duγ0 .

The above inequality follows from Theorem 5 of Redner (1981). Since π′js, α and λ are all finite,

[
∏g

j=1 π
(α−1)
j ]λ is finite. Therefore, with the result of Theorem 5 of Redner (1981), the right-hand side

of the inequality is finite. This concludes the proof. �

Lemma 2.
∫
| log f1(x; γ0)|duγ0 is finite.

Proof: According to the definition of f1(x; γ0) we have

∫ ∣∣∣log f1(x; γ0)
∣∣∣duγ0 =

∫ ∣∣∣∣∣∣∣∣log
g∑

j=1

π jϕ j(x; µ j,Σ j)

 g∏
j=1

π(α−1)
j

λ
∣∣∣∣∣∣∣∣duγ0

=

∫ ∣∣∣∣∣∣∣∣log
g∑

j=1

π jϕ j(x; µ j,Σ j) + λ(α − 1)
g∑

j=1

log π j

∣∣∣∣∣∣∣∣duγ0
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≤

∫ ∣∣∣∣∣∣∣∣log
g∑

j=1

π jϕ j(x; µ j,Σ j)

∣∣∣∣∣∣∣∣duγ0 +

∫ ∣∣∣∣∣∣∣∣λ(α − 1)
g∑

j=1

log π j

∣∣∣∣∣∣∣∣duγ0

≤

∫ ∣∣∣∣∣∣∣∣log
g∑

j=1

π jϕ j(x; µ j,Σ j)

∣∣∣∣∣∣∣∣duγ0 +

∫ ∣∣∣λ(α − 1)g log ε
∣∣∣duγ0 (3.1)

=

∫ ∣∣∣∣∣∣∣∣log
g∑

j=1

π jϕ j(x; µ j,Σ j)

∣∣∣∣∣∣∣∣duγ0 + λ(α − 1)g log ε. (3.2)

(3.1) follows from Assumption 3 and the first term in (3.2) is finite following Theorem 5 of Redner
(1981). This concludes the proof. �

Redner (1981) defined the quotient space, Γ̃, related to Γ and proved that the MLE is consistent in
every compact parameter subset Γ̃ of Γ that contains γ0. Therefore, since the results of Lemma 1 and
Lemma 2 are also applicable to the quotient space, the nonidentifiable problem is considered to have
been resolved hereinafter.

Lemma 3. For any γ , γ0 , we have

E0 log f1(x; γ) < E0 log f1(x; γ0). (3.3)

Proof: Let us define ν = log f1(x, γ) − log f1(x, γ0). Then

E0
[
eν

]
= E

[
f1(x, γ)
f1(x, γ0)

]
=

∫ 
∏g

j=1 π
(α−1)
j∏g

j=1 π
(α−1)
0 j


λ

duγ0 =

 g∏
j=1

(
π j

π0 j

)(α−1)
λ .

Thus, we have

log E0
[
eν

]
= λ

 g∑
j=1

(α − 1) log π j −

g∑
j=1

(α − 1) log π0 j

 < 0.

The inequality follows from the Assumption 2. By Jensen’s inequality, we obtain E0 [ν] ≤ log E0 [eν] <
0. Therefore, E0 [ν] < 0, which is equivalent to (3.3). �

Now, we are ready to prove the consistency of the penalized likelihood estimator.

Theorem 1. If the Assumptions 1–3 are satisfied, then PMLE of γ0 in a compact subset of Γ is a
consistent estimator.

Proof: In the previous Lemmas 1–3, we showed the following.∫
log f (x; γ, ρ)duγ0 < ∞,∫ ∣∣∣log f1(x; γ0)

∣∣∣duγ0 < ∞

and

E0 log f1(x; γ) < E0 log f1(x; γ0).

Those correspond to Wald’s Assumption 2, Assumption 6 and Lemma 1, respectively. Since all the
other assumptions are obviously satisfied, the rest of Proof follows from the Theorem 1 and Theorem
2 of Wald. �
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4. Simulation

4.1. Algorithm

In order to estimate parameters maximizing the penalized likelihood proposed as in (2.1), we use
the EM algorithm (Dempster et al., 1977). In the EM algorithm, it is assumed that each observation
xi (i = 1, 2, . . . , n) is associated with an unobserved state zi (i = 1, 2, . . . , n), which is the indicator
vector of length g, zi = (zi1, zi2, . . . , zig)′, and zi j is 1 if and only if xi is generated by density j and 0
otherwise. The joint distribution of xi and zi under normal mixture assumption is (Titterington et al.,
1985)

f (xi, zi; γ) =

g∏
j=1

[
π jϕ(xi; µ j,Σ j)

]zi j
.

Therefore, the penalized log likelihood for the complete-data based on (2.1) is

n∑
i=1

g∑
j=1

zi j log π jϕ(xi; µ j,Σ j) + λn
g∑

j=1

(α − 1) log π j. (4.1)

Since zi j is unknown, the complete-data log likelihood cannot be used directly. Thus we instead work
with its expectation, that is, we apply the EM algorithm. The EM algorithm is defined by cycling back
and forth between E-step and M-step until likelihood is no longer improved. In E-step, we find the
conditional expectation of the hidden variables as follows.

ẑ(k+1)
i j =

π̂(k)
j ϕ

(
xi; µ̂

(k)
j , Σ̂

(k)
j

)
∑g

j=1 π̂
(k)
j ϕ

(
xi; µ̂

(k)
j , Σ̂

(k)
j

) .
In M-step, we find the optimal parameter values that maximize (4.1). Those are

π̂ j =
1/n

∑n
i=1 ẑ(k+1)

i j + λ(α − 1)

1 + λg(α − 1)
,

µ̂ j =

∑n
i=1 ẑ(k+1)

i j xi∑n
i=1 ẑ(k+1)

i j

and

Σ̂ j =

∑n
i=1 ẑ(k+1)

i j

(
xi − µ̂

(k)
j

) (
xi − µ̂

(k)
j

)T∑n
i=1 ẑ(k+1)

i j

.

The difference from the usual EM algorithm is that we check if the values of some π′js are too small
after each iteration step, and if it happens, the corresponding components are eliminated from the
model. The current value of the penalized likelihood can drop down temporarily when we eliminate
insignificant components, in which case we reset the current likelihood value so that the procedure
continues with a model having a smaller number of components.
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4.2. The infinite likelihood problem

Theoretically the likelihood function is not bounded above and therefore the algorithm could diverge.
This usually happens on the boundary points of the parameter space. We, however, proved the con-
sistency of the estimator with a compact subset by assuming that the density function goes to zero
whenever parameters approach a boundary point. This assumption is reasonable except for a situation
where one of the components is becoming degenerate on a single data point. If, for component j,
µ j → xi and |Σ j| → 0, then the likelihood goes to infinity.

The proposed model prevents the situation from happening by eliminating the component before
it gets stuck on a data point. Since ẑi j is the probability that xi was generated by component j,
ẑi j → 1 and zk j → 0 (k , i) if µ j → xi and |Σ j| → 0 as n goes to infinity. Thus, 1/n

∑
ẑi j → 0 and

therefore, π j → λ(α− 1)/ {1 + λg(α − 1)}. If we choose 0.01 and 0.001 for α and λ, respectively, then
π j → −0.001 with g = 5. It seems awkward that π j goes to a negative value; however we eliminate
the corresponding component before π j reaches a negative value.

4.3. Simulation results

We present the simulation results with some test distributions, which cover up to the 8-dimension.
For up to three dimensional distributions, we started with 10 cases of sample size of 1000 and if the
results are not good enough, 10 more cases of sample size of 2000 have been drawn from the same
distribution and tested. For higher than three-dimensional distributions, we tested only the standard
normal distribution. As a measure of error, we can use the integrated absolute error(IAE), which is
defined as ∫

Rd

∣∣∣ f0(x) − f̂ (x)
∣∣∣ dx.

However, for the sake of simplicity we used the following formula to approximate IAE.∑
x∈Rd

∣∣∣ f0(x) − f̂ (x)
∣∣∣ (∆x)d,

which is the sum of the volumes of d-dimensional hypercube multiplied by | f0(x) − f̂ (x)|. The sum is
over the support of the probability density.

The simulation procedure along with model parameter values is as follows.

1. Set a true underlying distribution.

2. Generate random samples according to the distribution.

3. Find an overfitted model with excessive number of components. Overfitted models can be obtained,
for example, by using the adaptive mixture density estimation (Priebe, 1994).

4. Run the PMLE algorithm with α = 0.01 and λ = 0.001 and remove components when π < 0.03.

Two different bivariate distributions are tested. Those are

1. Unimodal: N
([

0
0

]
,

[
2 .4
.4 2

])
.

2. Bimodal:
3

10
N

([
−3
−3

]
,

[
1 .8
.8 1

])
+

7
10

N
([

3
3

]
,

[
1 0
0 1

])
.
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Table 1: Results for the bivariate distributions
Type of dist. Sample size # of components # of cases Average error Average iter.

1 4 .0588 705
2 2 .0910 1394

Unimodal 1000 3 1 .0970 652
4 1 .1446 322
5 2 .1440 360

2000 1 10 .0491 771
2 2 .0678 294
3 5 .0809 811

Bimodal 1000 4 1 .0995 545
5 1 .1358 1394
8 1 .1513 126

2000 2 10 .0405 621

Table 2: Results for the trivariate distributions
Type of dist. Sample size # of components # of cases Average error Average iter.

1 1 .0670 418
2 2 .1014 905

1000 3 2 .1348 1080
5 1 .2159 551

Unimodal 8 2 .2888 115
10 2 .2903 127
1 8 .0665 879

2000 2 1 .0813 698
3 1 .0827 1022
2 1 .0795 395
3 1 .1126 585

1000 5 3 .1879 236
6 1 .1982 60

Bimodal 9 3 .2194 44
11 1 .2554 33
2 6 .0715 819

2000 3 3 .0843 431
4 1 .1048 1439

Simulation results are summarized in Table 1. With the sample size of 1000, about half of the
unimodal distributions have been poorly estimated and the story is similar for the bimodal distribution;
however, both distributions are well estimated with the sample size of 2000.

Now we test two different trivariate distributions. Those are

1. Unimodal: N


000

 ,
2 .4 0
.4 1 −.6
0 −.6 3


.

2. Bimodal:
1
2

N


000

 ,
1 .8 0
.8 1 0
0 0 1


 +

1
2

N


333

 ,
 1 −.8 0
−.8 1 0
0 0 1


.

Simulation results are summarized in Table 2. In the trivariate case, the results of the sample
size of 1000 look bad. The results of the sample size of 2000 seem acceptable for both distributions,
although we might need larger sample sizes to obtain better results for the bimodal case.

As with other maximum-likelihood-type estimation methods, the suggeted method requires large
sample sizes for accurate estimation. As we can see in Table 1 and Table 2, the sample size should



364 SungMahn Ahn, Sung Wook Baik

Table 3: Results for the higher dimensional distributions
Dimension Sample Size Average Error # of successful cases

2000 .3224 4
3000 .1166 9

4 4000 .0681 10
5000 .0773 10
6000 .0652 10
2000 .2344 2
3000 .2269 6

5 4000 .1045 8
5000 .0800 10
6000 .0805 10
2000 .3767 0
3000 .2639 5

6 4000 .1035 8
5000 .0911 10
6000 .1008 9
2000 .4571 1
3000 .2495 2

7 4000 .1466 7
5000 .1719 8
6000 .0817 10
2000 .4218 0
3000 .3441 1

8 4000 .2693 2
5000 .1560 6
6000 .0936 10

be larger than 1000 to have a fairly good estimators of the densities chosen. It is hard to tell a priori
how big the sample size should be. The simulation results tell us that the likelihood surfaces created
with the sample size of 1000 have many spurious local maxima, which could be smoothed out with
additional likelihood provided by more sample points.

Now, we present the simulation results for 4- to 8-dimensional distributions. We tested only the
standard normal distribution, which is N(On×1, In×n). For each dimension, total 50 sets of samples
were drawn (10 sets of 2000 sample points, 10 sets of 3000 sample points, and so on up to 10 sets
of 6000 sample points). And the results are shown in Table 3, where we see average errors and the
number of successful cases, which we define to end up with a single number of component for each
category of the simulation. With sample sizes of 6000 or more, we were able to correctly estimate the
number of components most of the time.

5. Summary and Discussion

This paper investigated a penalized likelihood method for estimating the parameter of normal mixtures
in multivariate settings with full covariance matrices. The main idea of our approach to estimating
γ is such that we have excessive number of components to start with and try to eliminate spurious
components during the process of parameter estimation. In order to do so, we added a penalty term
to usual likelihood function and constructed a penalized likelihood function defined as (2.1) with the
penalty term to be (2.2). We also added some assumptions over Redner (1981).

To prove consistency of the estimator, we basically followed the technique of Wald (1949) and
used the results of Redner (1981) who handled the unidentifiable problem by using the quotient topo-
logical space where equivalent solutions are mapped into a single point. However, some of the as-
sumptions of Wald needed to be verified, since we extended the likelihood function to have a specific
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penalty term. We verified the assumptions through the Lemmas 1–3.
The proposed model tackled the issues inherent in normal mixtures such as regarding number of

components, identifiability problem and boundary point problem.
Finally, the simulation results can be summarized as follows.

1. The algorithm works in the multi-dimensional normal mixture models.

2. Larger sample sizes are needed for distributions having more components.

3. Larger sample sizes are needed for higher dimensional distributions.

4. The number of iterations does not vary much depending on distributions.

5. Proper sample sizes to get reasonably good estimators is suggested.
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