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Abstract
The ROC curve is drawn with two conditional cumulative distribution functions (or survival functions) of

the univariate random variable. In this work, we consider joint cumulative distribution functions of k random
variables, and suggest a ROC curve for multivariate random variables. With regard to the values on the line,
which passes through two mean vectors of dichotomous states, a joint cumulative distribution function can be
regarded as a function of the univariate variable. After this function is modified to satisfy the properties of
the cumulative distribution function, a ROC curve might be derived; moreover, some illustrative examples are
demonstrated.
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1. Introduction

The ROC technique, developed in the signal detection theory, is used and studied to assign cases
into dichotomous states in many applications. In this study, we consider some applications under the
credit evaluation situation. The characteristics of the borrower are supposed to determine in terms
of a continuous score random variable X and parameter space Θ. It is assumed that the borrower’s
population contains two sub-populations Θ = {θd, θn}. The sub-populations consist of default(d) and
non-default (n), which depend on the repayment ability of loans. The score variable X represents the
credit information of the borrower and is used to expect the future state of the borrower.

The ROC curve is plotted with two cumulative distribution functions(CDF), F(x; θd) and F(x; θn),
which are the true positive rate(TPR; sensitivity or hit rate) and the false positive rate(FPR; 1 −
specificity or false alarm rate), respectively, for all threshold (cutoff point) x. F(x; θd) and F(x; θn)
correspond to the Y and X axes of a unit square on a two dimensional plane (see Metz (1978), Zweig
and Campbell (1992), Greiner et al. (2000), Gardner and Greiner (2006) and Tasche (2006) for further
details).

For the ROC curve of a univariate score variable, there exists a paired value (F(x; θd), F(x; θn))
uniquely for any X = x. The ROC curve could be represented with these (F(x; θd), F(x; θn)) for all X =
x. However for multivariate cases, there does not exist an unique value (x1, . . . , xk) that correspond to
any paired value of CDFs (F( · , . . . , · ; θn), F( · , . . . , · ; θd)), so that a value of paired CDFs could not
be defined uniquely for any X1 = x1, . . . , Xk = xk. Hence ROC curve for multivariate variables might
not be drawn with paired CDFs (F( · , . . . , · ; θn), F( · , . . . , · ; θd)) for all X1 = x1, . . . , Xk = xk.

There exist significant literature reviews of ROC curve research that are mostly are based on
the univariate random variable. The score random vector is extended to the k-dimension in this
paper; subsequently, we will develop the ROC curve for a multivariate score random vector X =
(X1, X2, . . . , Xk)′. This ROC curve could be applied to discriminate into dichotomous states in many
real multivariate data analysis. The ROC curve based on two conditional joint CDFs, F(x1, . . . , xk; θd)
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and F(x1, . . . , xk; θn), is suggested and explained in Section 2. In Section 3, with the assumption
that the score random vector follows the multivariate normal distributions, ROC curves are obtained
and discussed with a discriminant function. In Section 4, the empirical ROC curve is drawn based on
random samples that are obtained from the multivariate normal distributions. Also the multivariate ex-
ponential distributions are considered among non-normal distributions and the ROC curve is explored
with these random samples from the multivariate exponential distributions as illustrative examples. A
conclusion is derived in Section 5.

2. ROC Curve for Multivariate Random Variables

The joint CDF, F(x1, x2, . . . , xk), of the multivariate score random vector is supposed to be a convex
combination of two conditional CDFs, F(x1, . . . , xk; θd) and F(x1, . . . , xk; θn), under the borrower’s
default and non-default states, such as

F(x1, x2, . . . , xk) = λF(x1, . . . , xk; θd) + (1 − λ)F(x1, . . . , xk; θn), (2.1)

where λ is the total probability of default P(Θ = θd). It is assumed that the mean vectors of the mul-
tivariate random variable with default and non-default states are (µ1d, µ2d, . . . , µkd)′ and (µ1n, µ2n, . . . ,
µkn)′, respectively.

It cannot be determined unique (x1, . . . , xk) for any paired value of CDFs (F( · , . . . , · ; θn), F( · , . . . ,
· ; θd)). In addition, the ROC curve might not be plotted with paired CDFs (F( · , . . . , · ; θn), F( · , . . . , · ;
θd)) for all X1 = x1, . . . , Xk = xk. If the random variables X2, . . . , Xk might be represented as functions
of the first variable X1, say xi = gi(x1), i = 2, . . . , k, then (F(x1, . . . , xk; θn), F(x1, . . . , xk; θd)) can be re-
placed with (F(x1, g2(x1), . . . , gk(x1); θd), F(x1, g2(x1), . . . , gk(x1); θn)). Moreover, there exists unique
(x1, x2 = g2(x1), . . . , xk = gk(x1)) that correspond to any paired value of CDFs (F(x1, g2(x1), . . . ,
gk(x1); θn), F(x1, g2(x1), . . . , gk(x1); θd)). Since two CDFs F(x1, g2(x1), . . . , gk(x1); θn) and F(x1, g2(x1),
. . . , gk(x1) ; θd) are not CDFs, those are adjusted to satisfy the properties of CDF. Then a ROC
curve for multivariate random variables could be represented with a adjusted paired CDFs for all
x1, x2 = g2(x1), . . . , xk = gk(x1).

In order to define functions, gi(x1), i = 2, . . . , k, let us consider the following linear functions that
pass through two mean vectors (µ1d, µ2d, . . . , µkd)′ and (µ1n, µ2n, . . . , µkn)′ of the borrower’s default
and non-default.

x1 − µ1d

µ1n − µ1d
=

x2 − µ2d

µ2n − µ2d
= · · · = xk − µkd

µkn − µkd
. (2.2)

Hence, x2, . . . , xk values of the coordinates (X1, X2, . . . , Xk) are expressed as functions of x1, such as
g2(x1), . . . , gk(x1), in equation (2.2). For example, x2 = g2(x1) function can be defined as

x2 = g2(x1) ≡
(
µ2n − µ2d

µ1n − µ1d

)
× (x1 − µ1d) + µ2d.

Then the coordinates (x1, x2, . . . , xk) of the line pass through two mean vectors. The ROC curve for
univariate random variable needs to assume that Fd(x) ≥ Fn(x) for all x. In addition, for multivariate
random variables, it is also supposed that Fd(x1, . . . , xk) ≥ Fn(x1, . . . , xk) for any x1, . . . , xk. This
assumption implies that each µid is greater than or equal to µin, but some µid are greater than µin for
i = 1, . . . , k. Hence the slope, (µin − µid)/(µ1n − µ1d), of gi(x1) is non-negative for i = 2, . . . , k, so that
gi(x1) must be non-decreasing in x1.
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Two conditional CDFs in (2.1) could be represented as F(x1,g2(x1), . . . , gk(x1); θd) and F(x1,g2(x1),
. . . , gk(x1); θn), respectively, which are the functions of X1 itself. Finally, the following Fd(x1) and
Fn(x1) are defined to satisfy the properties of CDF of the univariate X1, respectively,

Fd(x1) = F (x1, g2(x1), . . . , gk(x1); θd)
/ ∫

F(x1, g2(x1), . . . , gk(x1); θd)dx1, (2.3)

Fn(x1) = F(x1, g2(x1), . . . , gk(x1); θn)
/ ∫

F(x1, g2(x1), . . . , gk(x1); θn)dx1.

Therefore, if the values of Fn(x1) and Fd(x1) for all x1 correspond to the X and Y axes of a unit square,
we could plot the ROC curve for two conditional CDFs of a k-dimensional score random vector.

3. ROC Curve for Multivariate Normal Distribution

It is assumed that two joint CDFs, F(x; θd) and F(x; θn), under the borrower’s default and non-default
states are the following multivariate normal distributions:

F
(
x; θd

) ≡ Φ (
x; µd,Σd

)
, F

(
x; θn

)
≡ Φ

(
x; µn,Σn

)
, (3.1)

where µd and µn are the mean vectors; the variances of the random variable for the borrower’s default
and non-default states are supposed to be 1 and σ2, respectively, and the covariance of the two random
variables, Xi and X j, are set as Cov(Xi, X j) = ρ|i− j|σ2. Then the covariance matrixes, Σd and Σn, of the
score random vectors for the borrower’s default and non-default states are as follows:

Σd =


1 · · · ρ|1−k|

...
. . .

...
ρ|1−k| · · · 1

 , Σn =


σ2 · · · ρ|1−k|σ2

...
. . .

...
ρ|1−k|σ2 · · · σ2

 . (3.2)

Hence, the models of the borrower’s default and non-default states are Xd ∼ Nk(µd,Σd) and Xn ∼
Nk(µn,Σn), respectively. Various ROC curves will be obtained and compared with several values of r,
σ2 and ρ. Figure 1 represents two ROC curves: the left curve is for the trivariate and the right one is
for four dimensional normal distributions. The mean vectors for the default state, µd, are null vectors;
µn is (1, 1.5, 2)′ on the left and (1, 1.5, 2, 2.5)′ on the right in Figure 1. The left graphs in Figure 1 are
for σ = 1.5 and ρ = −0.5, 0, 0.5, and the right one is for ρ = 0.5 and σ = 0.5, 1.0, 1.5.

For the left ROC curves (Figure 1), it is found that as ρ increases, the ROC curves go towards the
(0, 1) point. Specifically, the discriminative ability of a diagnostic or prognostic test increases. As the
standard deviation for the borrower’s non-default state, σ, has increasing values from 0.5 to 1.5, while
that for default state is fixed to be 1, the ROC curves run far away from the (0, 1) point, such that the
discriminative ability is reduced.

From each ROC curve (Figure 1), it is found that when Σd = Σn, the value (x1, x2, x3) of the closest
(0, 1) point on the ROC curve corresponds to a zero value of the well-known discriminate function for
multivariate normal distributions, such as

−2 lnΛ = ln |Σd | + x′Σ−1
d x − ln |Σn| −

(
x − µn

)′
Σ−1

n

(
x − µn

)
.

4. Illustrative Examples

First, let the random variables X1, X2, X3 follow the trivariate normal distribution, such as

Φ
(
x1, x2, x3; µd,Σd

)
, Φ

(
x1, x2, x3; µn,Σn

)
,
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Figure 1: ROC curves for multivariate normal distributions

where µd = (2, 3, 4)′, µn = (3, 4, 5)′, and σ = 1.5 and ρ = 0.5 in the covariance matrix (3.1). Also,
we obtain sample values of sizes 1,500 and 2,000 for each borrower’s default and non-default states.
Let the sample means and sample standard deviations of the three random variables for each state be
(Xid, S id) and (Xin, S in), i = 1, 2, 3, respectively. By using equation (2.2), both values x2 and x3 in the
following intervals for each state are selected for x1 in the data:

x2 ∈
X2n − X2d

X1n − X1d

 × (
x1 − X1d

)
+ X2d ± ∆2, (4.1)

x3 ∈
X3n − X3d

X1n − X1d

 × (
x1 − X1d

)
+ X3d ± ∆3,

where ∆2 and ∆3 may be a quarter of a minimum of two standard deviations for each state of random
variables, X2 and X3, respectively. That is, ∆2 = 0.25 ×min{S 2d, S 2n} and ∆3 = 0.25 ×min{S 3d, S 3n}.
Then, the values (x1, x2, x3) in the intervals (4.1) could be regarded as the points on the line that passes
through two sample mean vectors (X1d, X2d, X3d)′ and (X1n, X2n, X3n)′.

In this example, 70 and 56 values among the data are selected from the borrower’s default and
non-default states, respectively, which are only 3.6% of the total data set. With this data, the empirical
CDFs, Fd(x1) and Fn(x1), defined in (2.3) are obtained; hence, the empirical ROC curve could be
explored in Figure 2.

Next, a random sample is obtained from the trivariate exponential distribution by using the Choles-
ky square root method among “Multivariate Computations in R”, where µd = (1, 1, 1)′, µn = (1.5, 1.5,
1.5)′, and σ = 1.5, ρ = 0.3 in the covariance matrix (3.2). With similar arguments, two samples are
generated of sizes 1,500 and 2,000 for each borrower’s default and non-default states. In order to take
the random values which pass through two mean vectors, the values (x1, x2, x3) are selected in the
following intervals:

x2 ∈ x1 ± ∆2, x3 ∈ x1 ± ∆3,

where ∆2 and ∆3 could set all 0.25.
These sample values are of sizes 105 and 69 from the borrower’s default and non-default states,



ROC Curve for Multivariate Random Variables 173

Figure 2: Empirical ROC curve from multivariate normal distribution

Figure 3: Empirical ROC curve from multivariate exponential distribution

respectively. These are only 4.9% of the total data set. With this illustrated sample, the empirical ROC
curve could be represented in Figure 3.

5. Conclusion

The ROC curve is plotted with TPR and FPR for the univariate random variable. In this study, we
extend to multivariate random vectors. The joint CDF of multivariate score random vector is supposed
to be the convex combination of two conditional CDFs, F(x1, . . . , xk; θd) and F(x1, . . . , xk; θn), under
the borrower’s default and non-default states.

We consider only the values (x1, x2, . . . , xk) of the line, that pass through two population mean vec-
tors for two states. Then these x2, . . . , xk values of the coordinates (X1, X2, . . . , Xk) could be expressed
as functions of x1. With the values (x1, x2, . . . , xk) of the line, which pass through two mean vectors,
two conditional cumulative distribution functions could be represented as functions of X1 itself. We
modify this function of X1 on the line, which passes through two mean vectors, in order to satisfy the
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properties of CDF. With these transformed two CDFs under the borrower’s default and non-default
states, we suggest a multivariate ROC curve.

For multivariate normal distributions under the borrower’s default and non-default states with var-
ious mean vectors and covariance matrixes, ROC curves are explored. Therefore, we could conclude
that as ρ increases, ROC curves go towards the (0, 1) point in the unit square. As the standard devi-
ation for the borrower’s non-default state has larger values than in the default state, the ROC curves
run far away from the (0, 1) point; hence, the discriminative ability decreases.

Two random samples of different sample sizes distributions for the two states are taken from the
trivariate normal and exponential distributions. From these data sets, we could select two samples
whose values (x1, x2, x3) are regarded to be close to the straight line through two sample mean vec-
tors. With the selected data, the ROC curves could be explored. Even though the selected data is
small, these values are important since these are located around the mean vectors. Therefore, it is
concluded that this ROC curve can be used and applied to discriminate into dichotomous states in
many multivariate analysis whose distributions are normal as well as non Gaussian distributions.
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