• Title/Summary/Keyword: Multiplicative

Search Result 546, Processing Time 0.026 seconds

BOOLEAN MULTIPLICATIVE CONVOLUTION AND CAUCHY-STIELTJES KERNEL FAMILIES

  • Fakhfakh, Raouf
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.515-526
    • /
    • 2021
  • Denote by ��+ the set of probability measures supported on ℝ+. Suppose V�� is the variance function of the Cauchy-Stieltjes Kernel (CSK) family ��-(��) generated by a non degenerate probability measure �� ∈ ��+. We determine the formula for variance function under boolean multiplicative convolution power. This formula is used to identify the relation between variance functions under the map ${\nu}{\mapsto}{\mathbb{M}}_t({\nu})=({\nu}^{{\boxtimes}(t+1)})^{{\uplus}{\frac{1}{t+1}}}$ from ��+ onto itself.

ON COUPLED COINCIDENCE POINTS IN MULTIPLICATIVE METRIC SPACES WITH AN APPLICATION

  • Ibtisam Mutlaq Alanazi;Qamrul Haque Khan;Shahbaz Ali;Tawseef Rashid;Faizan Ahmad Khan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.775-791
    • /
    • 2023
  • In this manuscript, we prove the existence of the coupled coincidence point by using g-couplings in multiplicative metric spaces (MMS). Further we show that existence of a fixed point in ordered MMS having t-property. Finally, some examples and application are presented for attesting to the credibility of our results.

MULTIPLICATIVE FUNCTIONS COMMUTABLE WITH BINARY QUADRATIC FORMS x2 ± xy + y2

  • Poo-Sung, Park
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.75-81
    • /
    • 2023
  • If a multiplicative function f is commutable with a quadratic form x2 + xy + y2, i.e., f(x2 + xy + y2) = f(x)2 + f(x) f(y) + f(y)2, then f is the identity function. In other hand, if f is commutable with a quadratic form x2 - xy + y2, then f is one of three kinds of functions: the identity function, the constant function, and an indicator function for ℕ \ pℕ with a prime p.

MULTIPLICATIVE GROUPS OF INTEGERS WITH SEMI-PRIMITIVE ROOTS MODULO n

  • Lee, Ki-Suk;Kwon, Miyeon;Shin, GiCheol
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • Consider a multiplicative group of integers modulo $n$, denoted by $\mathbb{Z}_n^*$. Any element $a{\in}\mathbb{Z}_n^*$ is said to be a semi-primitive root if the order of $a$ modulo $n$ is ${\phi}(n)/2$, where ${\phi}(n)$ is the Euler phi-function. In this paper, we discuss some interesting properties of the multiplicative groups of integers possessing semi-primitive roots and give its applications to solving certain congruences.

Design of a Multiplier for Irreducible Polynomial that all Coefficient over GF($3^m$) (GF($3^m$)상에서 모든 항의 계수가 존재하는 기약다항식의 승산기 설계)

  • 이광희;황종학;박승용;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.79-82
    • /
    • 2002
  • In this paper, we proposed a multiplicative algorithm for two polynomials in existence coefficients over finite field GF(3$^{m}$ ). Using the proposed multiplicative algorithm, we constructed the multiplier of modular architecture with parallel in-output. The proposed multiplier is composed of (m+1)$^2$identical cells, each cell consists of single mod(3) additional gate and single mod(3) multiplicative gate. Proposed multiplier need single mod(3) multiplicative gate delay time and m mod(3) additional gate delay time not clock. Also, the proposed architecture is simple, regular and has the property of modularity, therefore well-suited for VLSI implementation.

  • PDF

A nonparametric detector for random signals in a multiplicative noise model (곱셈꼴 잡음모형에서 비모수 확률 신호 검파기)

  • 배진수;박정순;김광순;송익호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.796-804
    • /
    • 1998
  • Multiplicative noise is known to be useful in modeling multipath propagation, which is crucial in mobile communication systems analysis. In this paper, nonparametric detection of weak random signals in multiplicative noise is considered. The locally optimum detector based on signs and ranks of observations isderived for good weak-signal detection performance under any noise probability density function. the detector has similarities to the locally optimum detector for random signals in multiplicative noise. It is shown that the nonparametric detector asymptotically hs almost the same performance as the locally optimum detector.

  • PDF

An analysis of the connections of mathematical thinking for multiplicative structures by second, fourth, and sixth graders (곱셈적 구조에 대한 2, 4, 6학년 학생들의 수학적 사고의 연결성 분석)

  • Kim, YuKyung;Pang, JeongSuk
    • The Mathematical Education
    • /
    • v.53 no.1
    • /
    • pp.57-73
    • /
    • 2014
  • This study investigated the connections of mathematical thinking of students at the second, fourth, and sixth grades with regard to multiplication, fraction, and proportion, all of which have multiplicative structures. A paper-and-pencil test and subsequent interviews were conducted. The results showed that mathematical thinking including vertical thinking and relational thinking was commonly involved in multiplication, fraction, and proportion. On one hand, the insufficient understanding of preceding concepts had negative impact on learning subsequent concepts. On the other hand, learning the succeeding concepts helped students solve the problems related to the preceding concepts. By analyzing the connections between the preceding concepts and the succeeding concepts, this study provides instructional implications of teaching multiplication, fraction, and proportion.

SATURATION-VALUE TOTAL VARIATION BASED COLOR IMAGE DENOISING UNDER MIXED MULTIPLICATIVE AND GAUSSIAN NOISE

  • JUNG, MIYOUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.3
    • /
    • pp.156-184
    • /
    • 2022
  • In this article, we propose a novel variational model for restoring color images corrupted by mixed multiplicative Gamma noise and additive Gaussian noise. The model involves a data-fidelity term that characterizes the mixed noise as an infimal convolution of two noise distributions and the saturation-value total variation (SVTV) regularization. The data-fidelity term facilitates suitable separation of the multiplicative Gamma and Gaussian noise components, promoting simultaneous elimination of the mixed noise. Furthermore, the SVTV regularization enables adequate denoising of homogeneous regions, while maintaining edges and details and diminishing the color artifacts induced by noise. To solve the proposed nonconvex model, we exploit an alternating minimization approach, and then the alternating direction method of multipliers is adopted for solving subproblems. This contributes to an efficient iterative algorithm. The experimental results demonstrate the superior performance of the proposed model compared to other existing or related models, with regard to visual inspection and image quality measurements.

COMMUTATIVITY OF MULTIPLICATIVE b-GENERALIZED DERIVATIONS OF PRIME RINGS

  • Muzibur Rahman Mozumder;Wasim Ahmed;Mohd Arif Raza;Adnan Abbasi
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • Consider ℛ to be an associative prime ring and 𝒦 to be a nonzero dense ideal of ℛ. A mapping (need not be additive) ℱ : ℛ → 𝒬mr associated with derivation d : ℛ → ℛ is called a multiplicative b-generalized derivation if ℱ(αδ) = ℱ(α)δ +bαd(δ) holds for all α, δ ∈ ℛ and for any fixed (0 ≠)b ∈ 𝒬s ⊆ 𝒬mr. In this manuscript, we study the commutativity of prime rings when the map b-generalized derivation satisfies the strong commutativity preserving condition and moreover, we investigate the commutativity of prime rings that admit multiplicative b-generalized derivation, which improves many results in the literature.