Browse > Article
http://dx.doi.org/10.12941/jksiam.2022.26.156

SATURATION-VALUE TOTAL VARIATION BASED COLOR IMAGE DENOISING UNDER MIXED MULTIPLICATIVE AND GAUSSIAN NOISE  

JUNG, MIYOUN (DEPARTMENT OF MATHEMATICS, HANKUK UNIVERSITY OF FOREIGN STUDIES)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.26, no.3, 2022 , pp. 156-184 More about this Journal
Abstract
In this article, we propose a novel variational model for restoring color images corrupted by mixed multiplicative Gamma noise and additive Gaussian noise. The model involves a data-fidelity term that characterizes the mixed noise as an infimal convolution of two noise distributions and the saturation-value total variation (SVTV) regularization. The data-fidelity term facilitates suitable separation of the multiplicative Gamma and Gaussian noise components, promoting simultaneous elimination of the mixed noise. Furthermore, the SVTV regularization enables adequate denoising of homogeneous regions, while maintaining edges and details and diminishing the color artifacts induced by noise. To solve the proposed nonconvex model, we exploit an alternating minimization approach, and then the alternating direction method of multipliers is adopted for solving subproblems. This contributes to an efficient iterative algorithm. The experimental results demonstrate the superior performance of the proposed model compared to other existing or related models, with regard to visual inspection and image quality measurements.
Keywords
Color image denoising; variational model; mixed noise; multiplicative Gamma noise; Gaussian noise; saturation-value total variation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. C. D. los Reyes and C.-B. Schonlieb, Image denoising: learning the noise model via nonsmooth PDE- constrained optimization, Inverse Problems and Imaging, 7 (2013), 1183-1214.   DOI
2 L. Calatroni, C. Chung, J. D. L. Reyes, C.-B. Schonlieb, and T. Valkonen, Bilevel approaches for learning of variational imaging models, Variational Methods: In Imaging and Geometric Control, Radon Series on Computational and Applied Mathematics, De Gruyter, 2017.
3 L. Calatroni, J. C. D. L. Reyes, and C.-B. Schonlieb, Infimal convolution of data discrepancies for mixed noise removal, SIAM J. Imaging Sci., 10 (2017), 1196-1233.   DOI
4 G. Sapiro, Vector-valued active contours, IEEE, Proceedings of CVPR, San Francisco, CA, USA 1996.
5 P. Blomgren and T. F. Chan, Color tv: Total variation methods for restoration of vector valued images, IEEE Trans. Image Process., 7 (1998), 304-309.   DOI
6 H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces: Applications to PDEs and optimization, MPS-SIAM Ser. Optim., SIAM, Philadelphia, 2006.
7 L. Rudin, P.-L. Lions, and S. Osher, Multiplicative denoising and deblurring: theory and algorithms, Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer, New York, 2003.
8 P. Rodriguez and B. Wohlberg, A generalized vector-valued total variation algorithm, IEEE, Proceedings of ICIP, Cairo, Egypt 2009.
9 S. Ono and I. Yamada, Decorrelated vectorial total variation, IEEE, Proceedings of CVPR, Columbus, OH, USA 2014.
10 Z. Jia, M. K. Ng, and W. Wang, Color image restoration by saturation-value total variation, SIAM J. Imaging Sci., 12 (2019), 972-1000.   DOI
11 R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, Statistics of speckle in ultrasound B-scans, IEEE Trans. Sonics and Ultrason., 30 (1983), 156-163.   DOI
12 J.-S. Lee, K. W. Hoppel, S. A. Mango, and A. R. Miller, Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery, IEEE Trans. Geosci. Remote Sens., 32 (1994), 1017-1028.   DOI
13 J. Duran, M. Moeller, C. Sbert, and D. Cremers, Collaborative total variation: A general framework for vectorial TV models, SIAM J. Imaging Sci., 9 (2016), 116-151.   DOI
14 W. Wang, M. Yao, and M. K. Ng, Color image multiplicative noise and blur removal by saturation-value total variation, Appl. Math. Model., 90 (2021), 240-264.   DOI
15 S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1-122.   DOI
16 A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97.   DOI
17 G. Steidl and T. Teuber, Removing multiplicative noise by Douglas-Rachford splitting methods, J. Math. Imag- ing Vis., 36 (2010), 168-184.   DOI
18 J. Lu, L. Shen, C. Xu, and Y. Xu, Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm, Appl. Comput. Harmon. Anal., 41 (2016), 518-539.   DOI
19 S. Yun and H. Woo, A new multiplicative denoising variational model based on m-th root transformation, IEEE Trans. Image Process., 21 (2012), 2523-2533.   DOI
20 H. Na, M. Kang, M. Jung, and M. Kang, An exp model with spatially adaptive regularization parameters for multiplicative noise removal, J. Sci. Comput., 75 (2018), 478-509.   DOI
21 H. Na, M. Kang, M. Jung, and M. Kang, Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters, Inverse Probl. Imaging, 13 (2019), 117-147.   DOI
22 L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.   DOI
23 T. Chan, S. Kang, and J. Shen, Total variation denoising and enhancement of color images based on the CB and HSV color models, J. Vis. Commun. Image Represent., 12 (2001), 422-435.   DOI
24 Y. Wen, M. Ng, and Y. Huang, Efficient total variation minimization methods for color image restoration, IEEE Trans. Image Process., 17 (2008), 2081-2088.   DOI
25 C. Wu and X.-C. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339.   DOI
26 S. Lefkimmiatis, A. Roussos, M. Unser, and P. Maragos, Convex generalizations of total variation based on the structure tensor with applications to inverse problems, Lecture Notes in Computer Science 7893, Springer Berlin, Heidelberg, Proceedings of SSVM, Graz, Austria, 2013.
27 Y. Dong and T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598-1625.   DOI
28 M. Kang, S. Yun, and H. Woo, Two-level convex relaxed variational model for multiplicative denoising, SIAM J. Imaging Sci., 6 (2013), 875-903.   DOI
29 T. Goldstein and S. Osher, The split bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.   DOI
30 I. Csiszar and G. Tusna, Information geometry and alternating minimization procedures, Statistics and Deci- sions, 1 (1984), 205-237.
31 P. Denis, P. Carre, and C. Fernandez-Maloigne, Spatial and spectral quaternionic approaches for colour im- ages, Comput. Vis. Image Und., 107 (2007), 74-87.   DOI
32 K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3-d transform-domain collab- orative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.   DOI
33 A. Jezierska, E. Chouzenoux, J.-C. Pesquet, and H. Talbot, A convex approach for image restoration with exact Poisson-Gaussian likelihood, SIAM J. Imaging Sci., 62 (2015), 17-30.
34 R. Kimmel, R. Malladi, and N. Sochen, Images as embedded maps and minimal surfaces: Movies, color, texture, and volumetric medical images, Int. J. Comput. Vis., 39 (2000), 111-129.   DOI
35 X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and applications to color image processing, Inverse Probl. Imaging, 2 (2008), 255-284.
36 R. Bergmann, R. H. Chan, R. Hielscher, J. Persch, and G. Steidl, Restoration of manifold-valued images by half-quadratic minimization, Inverse Probl. Imaging, 10 (2016), 281-304.   DOI
37 J. M. Schmitt, S. Xiang, and K. M. Yung, Speckle in optical coherence tomography, Journal of biomedical optics, 4 (1999), 95-105.   DOI
38 J.-S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans. Pattern Anal. Mach. Intell., 2 (1980), 165-168.   DOI
39 A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120-145.   DOI
40 C. Chen, M. Ng, and X.-L. Zhao, Alternating direction method of multipliers for nonlinear image restoration problems, IEEE Trans. Image Process., 24 (2015), 33-43.   DOI
41 Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.   DOI
42 Y. Dong, M. Hintermuller, and M. M. Rincon-Camacho, Automated regularization parameter selection in multi-scale total variation models for image restoration, J. Math. Imaging Vis., 40 (2011), 82-104.   DOI
43 G. Aubert and J.-F. Aujol. A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925-946.   DOI
44 V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-4 (1982), 157-166.   DOI
45 Y. Yu and S. T. Acton, Speckle reducing anisotropic diffusion, IEEE Trans. Image Process., 11 (2002), 1260- 1270.   DOI
46 K. Krissian, C.-F. Westin, R. Kikinis, and K. G. Vosburgh, Oriented speckle reducing anisotropic diffusion, IEEE Trans. Image Process., 16 (2007), 1412-1424.   DOI
47 Z. Li, Y. Lou, and T. Zeng, Variational multiplicative noise removal by DC programming, J. Sci. Comput., 68 (2016), 1200-1216.   DOI
48 J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294-321.   DOI
49 S. Parrilli, M. Poderico, C. V. Angelino, and L. Verdoliva, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Trans. Geosci. Remote Sens., 50 (2012), 606-616.   DOI
50 M. Hintermuller and A. Langer, Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L1-L2 data-fidelity in image processing, SIAM J. Imaging Sci., 6 (2013), 2134-2173.   DOI
51 A. Langer, Automated parameter selection in the L1-L2-TV model for removing gaussian plus impulse noise, Inverse Problems, 33 (2017), 074002.   DOI